姜思达和机器人_《奇葩说》姜思达爱上人工智能 马东发全网通缉令寻人

原标题:《奇葩说》姜思达爱上人工智能 马东发全网通缉令寻人

姜思达谈“网恋”落泪

凤凰娱乐讯 上周的《奇葩说》辩题大开脑洞:爱上人工智能算不算爱情?引发了现场导师以及奇葩辩手们对于爱情定义的深度探讨,而本场最催泪的瞬间无疑是姜思达讲述其与“人工智能”的虐爱故事,不仅让马东都为其发全网通缉令寻人,节目播出后也是虐哭无数网友令姜思达瞬间登上热搜,无数热心网友自发刷出#帮姜思达找到他#话题,誓要助他找出这个“意中人”。

针对辩题,姜思达先是坚定地给出了自己的看法,称人类曾经给爱情各种限定,让爱情受到太多公序良俗的约束,而爱情其实只能自己说了算,很多人认为人工智能是残缺的,可是爱情是可以允许残缺的,比如说网恋,于是姜思达就讲述了一个发生在他身上的“网恋故事”。“这个人我喜欢了一年,到现在没有见过面,一年多了,从奇葩说第一季录制之前就开始网恋,我觉得那个人特别的奇怪,到现在我也想骂他一句孙子,为什么,因为他就是不见我,他就是不给我透露他的真实姓名、真实的信息,所有的一切都基于一个聊天软件、基于一个交友软件,甚至我们连微信都没有,他在我面前就无数次地去充当扮演一个AI的角色,但我有没有可能爱上这个东西?”一番话引得现场不少奇葩也点头称是。

接着姜思达讲述曾经发生在两人之间一些或甜蜜或心酸的小互动,“奇葩说第一季结束之后,我一上来就被淘汰了,然后晚上回去的路上,我在路上我就挺难受的,我就哭,我就跟他说我被淘汰了,然后他说我早知道你不行,你根本就不会说话,第二季的时候他还在,知道我拿了一个BB KING,然后跟我说十万块钱你还能给自己买个小车;第三季他看了我第一集的节目,他说你这是什么造型,跟乌鸡一样,我们一直保持着这样的交流。”可是就算只有这样的交流却也让姜思达深陷其中,甚至产生怨恨为什么这个人没有一个实体站在他的面前,也让他思索过这究竟算不算爱情,而讲到曾经被捉弄的经历更是现场痛哭,“中间有一次我在学校里走,他突然间用手机给我发了一个信息,他说回头,然后我就回头看一眼,我说你在哪儿呢?他说你再回头,结果我就在那儿站了半个小时,结果他最后却说是在逗我玩儿。”虽说这次捉弄让他无比难受,可难受的那一刻却让他产生了爱情的感觉,姜思达曾一度怀疑对面那个人的身份,想象或许对面的那个人仅仅只是因为好玩,可是就算他是个机器人,“你线断了,我帮你焊不就是了。”

如此动情的讲述令全场动容,马东随即决定做一些实际行动帮助姜思达,“我们所有的奇葩说的观众一块搜搜这孙子吧……我们可以把所有的这些相关信息汇总一下,我们帮姜思达把这机器人搜出来看看。”现场不少观众高喊“姜思达别哭”,蔡康永都忍不住称“太欺负人了,这可是我们的班花。”

而姜思达的这段经历也触动了无数网友,纷纷表示姜思达的这段讲述简直让人哭惨了令人太心疼,而#帮姜思达找到他#也瞬间登上热门话题榜,不少网友高喊“你就出现吧好吗?”虽说不知道此人最后是否会出现,可是对于爱情的感动却是共通的,而下期《奇葩说》又会迎来哪些男神女神,又有哪些精彩的观点碰撞?敬请关注每周五、六晚8点爱奇艺准时播出的《奇葩说》。返回搜狐,查看更多

责任编辑:

【资源明】 1.项目代码功能经验证ok,确保稳定可靠运行。欢迎下载使用!在使用过程中,如有问题或建议,请及时私信沟通。 2.主要针对各个计算机相关专业,包括计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网等领域的在校学生、专业教师或企业员工使用。 3.项目具有丰富的拓展空间,不仅可作为入门进阶,也可直接作为毕设、课程设计、大作业、初期项目立项演示等用途。 4.当然也鼓励大家基于此进行二次开发。 5.期待你能在项目中找到乐趣灵感,也欢迎你的分享反馈! 本文介绍了基于QEM(Quadric Error Metrics,二次误差度量)的优化网格简化算法的CC++实现源码及其相关文档。这一算法主要应用于计算机图形学领域,用于优化三维模型的多边形数量,使之在保持原有模型特征的前提下实现简化。简化的目的是为了提高渲染速度,减少计算资源消耗,以及便于网络传输等。 本项目的核心是网格简化算法的实现,而QEM作为该算法的核心,是一种衡量简化误差的数学方法。通过计算每个顶点的二次误差矩阵来评估简化操作的误差,并以此来指导网格简化过程。QEM算法因其高效性准确性在计算机图形学中广泛应用,尤其在实时渲染三维打印领域。 项目代码包含CC++两种语言版本,这意味着它可以在多种开发环境中运行,增加了其适用范围。对于计算机相关专业的学生、教师行业从业者来,这个项目提供了丰富的学习实践机会。无论是作为学习编程的入门材料,还是作为深入研究计算机图形学的项目,该项目都具有实用价值。 此外,项目包含的论文文档为理解网格简化算法提供了理论基础。论文详细介绍了QEM算法的原理、实施步骤以及与其他算法的对比分析。这不仅有助于加深对算法的理解,也为那些希望将算法应用于自己研究领域的人员提供了参考资料。 资源明文档强调了项目的稳定性可靠性,并鼓励用户在使用过程中提出问题或建议,以便不断地优化完善项目。文档还提醒用户注意查看,以获取使用该项目的所有必要信息。 项目的文件名称列表中包含了加水印的论文文档、资源明文件实际的项目代码目录,后者位于名为Mesh-Simplification-master的目录下。用户可以将这些资源用于多种教学研究目的,包括课程设计、毕业设计、项目立项演示等。 这个项目是一个宝贵的资源,它不仅提供了一个成熟的技术实现,而且为进一步的研究学习提供了坚实的基础。它鼓励用户探索扩展,以期在计算机图形学领域中取得更深入的研究成果。
内容概要:本文详细介绍了利用改进粒子群算法(PSO)进行混合储能系统(如电池与超级电容组合)容量优化的方法。文中首先指出了传统PSO易陷入局部最优的问题,并提出通过非线性衰减惯性权重、引入混沌因子突变操作等方法来改进算法性能。随后,作者展示了具体的Python代码实现,包括粒子更新策略、适应度函数设计以及边界处理等方面的内容。适应度函数不仅考虑了设备的成本,还加入了对设备寿命功率调节失败率的考量,确保优化结果的实际可行性。实验结果显示,在风光发电系统的应用场景中,改进后的PSO能够在较短时间内找到接近全局最优解的储能配置方案,相比传统方法降低了系统总成本并提高了循环寿命。 适合人群:从事电力系统、新能源技术研究的专业人士,尤其是对储能系统优化感兴趣的科研工作者技术开发者。 使用场景及目标:适用于需要对混合储能系统进行容量优化的场合,旨在提高储能系统的经济效益使用寿命,同时保证供电稳定性。通过学习本文提供的理论知识代码实例,读者能够掌握改进粒子群算法的应用技巧,从而应用于实际工程项目中。 其他明:文中提到的所有代码均为Python实现,且已在GitHub上提供完整的源代码链接(尽管文中给出的是虚拟地址)。此外,作者还计划将改进的PSO与其他优化算法相结合,进一步提升求解复杂问题的能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值