java 加法用移位_位运算加减法实现 及位运算

本文深入探讨Java中的位运算,包括加法的位运算实现,通过补码解决加法问题,以及左移运算符<<、右移运算符>>和无符号右移>>>的细节。内容涵盖了位运算的数学意义、运算规则及其在整数溢出、乘除法中的应用实例。
摘要由CSDN通过智能技术生成

首先得知道,在Java中,int类型占4个字节,1个字节等于8位二进制,所以int类型32位,范围是-2147483648到2147483647,

因为1000 0000, 0000 0000, 0000 0000, 0000 0000这个是-2^31=-2147483648,所以负数多一个。

然后,因为计算机CPU的运算器中只有加法器,所以减法要转化成加法来计算,所以引入了补码。

补码可以解决两同号数相减或两异号数相加的问题。

举个例子,A表示十进制数“+6”,B表示十进制数“-8”,如果把这两个数的原码直接相加,那么

0000 0110

+ 1000 1000

———————

1000 1110

结果为-14,很明显是错的。

如果把这两个数的补码相加,那么

0000 0110     “+6”补码

+  1111 1000      “-8”补码

————————

1111 1110      “-2”补码

结果是-2的补码,结果是正确的。

要理解上面的补码运算,得先知道一下3点:

1、正数的原码 反码 补码完全相同。

2、负数的反码是将原码按位取反(符号位不变),补码=反码+1。

3、补码转原码和原码转补码的方法是一样的。

注:负数由补码得到源码:将补码-1  , 然后取反(符号位不变)

最后根据上面的计算方法,计算INT_MIN - 1的结果,看是不是等于 INT_MAX。

1000 0000, 0000 0000, 0000 0000, 0000 0000     “-2147483648”补码

+   1111 1111,1111 1111, 1111 1111,1111 1111       “-1”补码

————————————————————————

1 0111 1111,1111 1111, 1111 1111,1111 1111

很明显,运算溢出了。舍去溢出的最高位,最后运算的结果是0111 1111,1111 1111, 1111 1111,1111 1111。

又因为正数的原码 反码 补码完全相同。所以0111 1111,1111 1111, 1111 1111,1111 1111就是“2147483647”补码、源码= INT_MAX。

所以,综上所述:INT_MIN - 1的结果等于 INT_MAX。

1、 左移运算符

左移运算符<

1)它的通用格式如下所示:

value << num

num 指定要移位值value 移动的位数。

左移的规则只记住一点:丢弃最高位,0补最低位

如果移动的位数超过了该类型的最大位数,那么编译器会对移动的位数取模。如对int型移动33位,实际上只移动了332=1位。

2)运算规则

按二进制形式把所有的数字向左移动对应的位数,高位移出(舍弃),低位的空位补零。

当左移的运算数是int 类型时,每移动1位它的第31位就要被移出并且丢弃;

当左移的运算数是long 类型时,每移动1位它的第63位就要被移出并且丢弃。

当左移的运算数是byte 和short类型时,将自动把这些类型扩大为 int 型。

3)数学意义

在数字没有溢出的前提下,对于正数和负数,左移一位都相当于乘以2的1次方,左移n位就相当于乘以2的n次方

4)计算过程:

例如:3 <<2(3为int型)

1)把3转换为二进制数字0000 0000 0000 0000 0000 0000 0000 0011,

2)把该数字高位(左侧)的两个零移出,其他的数字都朝左平移2位,

3)在低位(右侧)的两个空位补零。则得到的最终结果是0000 0000 0000 0000 0000 0000 0000 1100,

转换为十进制是12。

移动的位数超过了该类型的最大位数,

如果移进高阶位(31或63位),那么该值将变为负值。下面的程序说明了这一点:

// Left shifting as a quick way to multiply by 2.

public class MultByTwo {

public static void main(String args[]) {

int i;

int num = 0xFFFFFFE;

for(i=0; i<4; i++) {

num = num << 1;

System.out.println(num);

}

}

}

该程序的输出如下所示:

536870908

1073741816

2147483632

-32

注:n位二进制,最高位为符号位,因此表示的数值范围-2^(n-1) ——2^(n-1) -1,所以模为2^(n-1)。

2、 右移运算符

右移运算符<

1)它的通用格式如下所示:

value >> num

num 指定要移位值value 移动的位数。

右移的规则只记住一点:符号位不变,左边补上符号位

2)运算规则:

按二进制形式把所有的数字向右移动对应的位数,低位移出(舍弃),高位的空位补符号位,即正数补零,负数补1

当右移的运算数是byte 和short类型时,将自动把这些类型扩大为 int 型。

例如,如果要移走的值为负数,每一次右移都在左边补1,如果要移走的值为正数,每一次右移都在左边补0,这叫做符号位扩展(保留符号位)(sign extension ),在进行右移

操作时用来保持负数的符号。

3)数学意义

右移一位相当于除2,右移n位相当于除以2的n次方。

4)计算过程

11 >>2(11为int型)

1)11的二进制形式为:0000 0000 0000 0000 0000 0000 0000 1011

2)把低位的最后两个数字移出,因为该数字是正数,所以在高位补零。

3)最终结果是0000 0000 0000 0000 0000 0000 0000 0010。

转换为十进制是2。

35 >> 2(35为int型)

35转换为二进制:0000 0000 0000 0000 0000 0000 0010 0011

把低位的最后两个数字移出:0000 0000 0000 0000 0000 0000 0000 1000

转换为十进制: 8

5)在右移时不保留符号的出来

右移后的值与0x0f进行按位与运算,这样可以舍弃任何的符号位扩展,以便得到的值可以作为定义数组的下标,从而得到对应数组元素代表的十六进制字符。

例如

public class HexByte {

public static public void main(String args[]) {

char hex[] = {

'0', '1', '2', '3', '4', '5', '6', '7',

'8', '9', 'a', 'b', 'c', 'd', 'e', 'f''

};

byte b = (byte) 0xf1;

System.out.println("b = 0x" + hex[(b >> 4) & 0x0f] + hex[b & 0x0f]);

}

}

(b >> 4) & 0x0f的运算过程:

b的二进制形式为:1111 0001

4位数字被移出:1111 1111

按位与运算:0000 1111

转为10进制形式为:15

b & 0x0f的运算过程:

b的二进制形式为:1111 0001

0x0f的二进制形式为:0000 1111

按位与运算:0000 0001

转为10进制形式为:1

所以,该程序的输出如下:

b = 0xf1

3、无符号右移

无符号右移运算符>>>

它的通用格式如下所示:

value >>> num

num 指定要移位值value 移动的位数。

无符号右移的规则只记住一点:忽略了符号位扩展,0补最高位

无符号右移规则和右移运算是一样的,只是填充时不管左边的数字是正是负都用0来填充,无符号右移运算只针对负数计算,因为对于正数来说这种运算没有意义

无符号右移运算符>>> 只是对32位和64位的值有意义

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值