首先得知道,在Java中,int类型占4个字节,1个字节等于8位二进制,所以int类型32位,范围是-2147483648到2147483647,
因为1000 0000, 0000 0000, 0000 0000, 0000 0000这个是-2^31=-2147483648,所以负数多一个。
然后,因为计算机CPU的运算器中只有加法器,所以减法要转化成加法来计算,所以引入了补码。
补码可以解决两同号数相减或两异号数相加的问题。
举个例子,A表示十进制数“+6”,B表示十进制数“-8”,如果把这两个数的原码直接相加,那么
0000 0110
+ 1000 1000
———————
1000 1110
结果为-14,很明显是错的。
如果把这两个数的补码相加,那么
0000 0110 “+6”补码
+ 1111 1000 “-8”补码
————————
1111 1110 “-2”补码
结果是-2的补码,结果是正确的。
要理解上面的补码运算,得先知道一下3点:
1、正数的原码 反码 补码完全相同。
2、负数的反码是将原码按位取反(符号位不变),补码=反码+1。
3、补码转原码和原码转补码的方法是一样的。
注:负数由补码得到源码:将补码-1 , 然后取反(符号位不变)
最后根据上面的计算方法,计算INT_MIN - 1的结果,看是不是等于 INT_MAX。
1000 0000, 0000 0000, 0000 0000, 0000 0000 “-2147483648”补码
+ 1111 1111,1111 1111, 1111 1111,1111 1111 “-1”补码
————————————————————————
1 0111 1111,1111 1111, 1111 1111,1111 1111
很明显,运算溢出了。舍去溢出的最高位,最后运算的结果是0111 1111,1111 1111, 1111 1111,1111 1111。
又因为正数的原码 反码 补码完全相同。所以0111 1111,1111 1111, 1111 1111,1111 1111就是“2147483647”补码、源码= INT_MAX。
所以,综上所述:INT_MIN - 1的结果等于 INT_MAX。
1、 左移运算符
左移运算符<
1)它的通用格式如下所示:
value << num
num 指定要移位值value 移动的位数。
左移的规则只记住一点:丢弃最高位,0补最低位
如果移动的位数超过了该类型的最大位数,那么编译器会对移动的位数取模。如对int型移动33位,实际上只移动了332=1位。
2)运算规则
按二进制形式把所有的数字向左移动对应的位数,高位移出(舍弃),低位的空位补零。
当左移的运算数是int 类型时,每移动1位它的第31位就要被移出并且丢弃;
当左移的运算数是long 类型时,每移动1位它的第63位就要被移出并且丢弃。
当左移的运算数是byte 和short类型时,将自动把这些类型扩大为 int 型。
3)数学意义
在数字没有溢出的前提下,对于正数和负数,左移一位都相当于乘以2的1次方,左移n位就相当于乘以2的n次方
4)计算过程:
例如:3 <<2(3为int型)
1)把3转换为二进制数字0000 0000 0000 0000 0000 0000 0000 0011,
2)把该数字高位(左侧)的两个零移出,其他的数字都朝左平移2位,
3)在低位(右侧)的两个空位补零。则得到的最终结果是0000 0000 0000 0000 0000 0000 0000 1100,
转换为十进制是12。
移动的位数超过了该类型的最大位数,
如果移进高阶位(31或63位),那么该值将变为负值。下面的程序说明了这一点:
// Left shifting as a quick way to multiply by 2.
public class MultByTwo {
public static void main(String args[]) {
int i;
int num = 0xFFFFFFE;
for(i=0; i<4; i++) {
num = num << 1;
System.out.println(num);
}
}
}
该程序的输出如下所示:
536870908
1073741816
2147483632
-32
注:n位二进制,最高位为符号位,因此表示的数值范围-2^(n-1) ——2^(n-1) -1,所以模为2^(n-1)。
2、 右移运算符
右移运算符<
1)它的通用格式如下所示:
value >> num
num 指定要移位值value 移动的位数。
右移的规则只记住一点:符号位不变,左边补上符号位
2)运算规则:
按二进制形式把所有的数字向右移动对应的位数,低位移出(舍弃),高位的空位补符号位,即正数补零,负数补1
当右移的运算数是byte 和short类型时,将自动把这些类型扩大为 int 型。
例如,如果要移走的值为负数,每一次右移都在左边补1,如果要移走的值为正数,每一次右移都在左边补0,这叫做符号位扩展(保留符号位)(sign extension ),在进行右移
操作时用来保持负数的符号。
3)数学意义
右移一位相当于除2,右移n位相当于除以2的n次方。
4)计算过程
11 >>2(11为int型)
1)11的二进制形式为:0000 0000 0000 0000 0000 0000 0000 1011
2)把低位的最后两个数字移出,因为该数字是正数,所以在高位补零。
3)最终结果是0000 0000 0000 0000 0000 0000 0000 0010。
转换为十进制是2。
35 >> 2(35为int型)
35转换为二进制:0000 0000 0000 0000 0000 0000 0010 0011
把低位的最后两个数字移出:0000 0000 0000 0000 0000 0000 0000 1000
转换为十进制: 8
5)在右移时不保留符号的出来
右移后的值与0x0f进行按位与运算,这样可以舍弃任何的符号位扩展,以便得到的值可以作为定义数组的下标,从而得到对应数组元素代表的十六进制字符。
例如
public class HexByte {
public static public void main(String args[]) {
char hex[] = {
'0', '1', '2', '3', '4', '5', '6', '7',
'8', '9', 'a', 'b', 'c', 'd', 'e', 'f''
};
byte b = (byte) 0xf1;
System.out.println("b = 0x" + hex[(b >> 4) & 0x0f] + hex[b & 0x0f]);
}
}
(b >> 4) & 0x0f的运算过程:
b的二进制形式为:1111 0001
4位数字被移出:1111 1111
按位与运算:0000 1111
转为10进制形式为:15
b & 0x0f的运算过程:
b的二进制形式为:1111 0001
0x0f的二进制形式为:0000 1111
按位与运算:0000 0001
转为10进制形式为:1
所以,该程序的输出如下:
b = 0xf1
3、无符号右移
无符号右移运算符>>>
它的通用格式如下所示:
value >>> num
num 指定要移位值value 移动的位数。
无符号右移的规则只记住一点:忽略了符号位扩展,0补最高位
无符号右移规则和右移运算是一样的,只是填充时不管左边的数字是正是负都用0来填充,无符号右移运算只针对负数计算,因为对于正数来说这种运算没有意义
无符号右移运算符>>> 只是对32位和64位的值有意义