1.常见的回归函数


2.工具
数据分析有很多成熟的工具可以使用,如R、python、spss等。此处我们选用python进行分析。首先,我们需要安装并导入python数据分析常用的库。
# 工具:python3
#固定导入
import numpy as np #科学计算基础库,多维数组对象ndarray
import pandas as pd #数据处理库,DataFrame(二维数组)
import matplotlib as mpl #画图基础库
import matplotlib.pyplot as plt#最常用的绘图库
from scipy import stats #scipy库的stats模块
mpl.rcParams["font.family"]="SimHei" #使用支持的黑体中文字体
mpl.rcParams["axes.unicode_minus"]=False # 用来正常显示负号 "-"
plt.rcParams['font.sans-serif']=['SimHei'] # 用来正常显示中文标签
# % matplotlib inline #jupyter中用于直接嵌入图表,不用plt.show()
import warnings
warnings.filterwarnings("ignore") #用于排除警告
#用于显示使用库的版本
print("numpy_" + np.__version__)
print("pandas_" + pd.__version__)
print("matplo

本文介绍了Python中进行线性回归分析的方法,包括statsmodels库的OLS函数进行普通最小二乘模型拟合,scipy.optimize.curve_fit进行回归函数拟合,scipy.stats.linregress进行线性拟合,以及statsmodels.formula.api.ols通过公式方式实现线性回归。通过实例展示了如何使用这些工具,并解释了模型评估指标。
最低0.47元/天 解锁文章
507

被折叠的 条评论
为什么被折叠?



