fit函数 model_python数据分析回归函数及线性回归分析

本文介绍了Python中进行线性回归分析的方法,包括statsmodels库的OLS函数进行普通最小二乘模型拟合,scipy.optimize.curve_fit进行回归函数拟合,scipy.stats.linregress进行线性拟合,以及statsmodels.formula.api.ols通过公式方式实现线性回归。通过实例展示了如何使用这些工具,并解释了模型评估指标。

1.常见的回归函数

4563e988fdb5e8db381999b98075babc.png4b81fac8eb26001983c9a0b6408f646d.png

2.工具

数据分析有很多成熟的工具可以使用,如R、python、spss等。此处我们选用python进行分析。首先,我们需要安装并导入python数据分析常用的库。

# 工具:python3

#固定导入
import numpy as np #科学计算基础库,多维数组对象ndarray
import pandas as pd #数据处理库,DataFrame(二维数组)
import matplotlib as mpl #画图基础库
import matplotlib.pyplot as plt#最常用的绘图库
from scipy import stats #scipy库的stats模块

mpl.rcParams["font.family"]="SimHei" #使用支持的黑体中文字体
mpl.rcParams["axes.unicode_minus"]=False # 用来正常显示负号  "-"
plt.rcParams['font.sans-serif']=['SimHei'] # 用来正常显示中文标签
# % matplotlib inline  #jupyter中用于直接嵌入图表,不用plt.show()
import warnings
warnings.filterwarnings("ignore") #用于排除警告
 
#用于显示使用库的版本
print("numpy_" + np.__version__)
print("pandas_" + pd.__version__)
print("matplo
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值