点击上方蓝色字体“高中数学王晖”关注王晖老师,免费获取各种知识干货和学习经验~~~您的点赞转发是对老师的最大鼓舞~~~
距高考还有142天

圆锥曲线中的定点,定值以及最值问题是近几年高考的一个常考点,今天给大家分享下有关圆锥曲线定值的专题。
一
单条直线与曲线相交的定值问题题目特点:单条直线与圆锥曲线交于两点,同时题目中还会给出一个等量关系,结合题目所求算出定值。
例题:
已知椭圆C:
,且过点A(2,1),若不经过A的直线L:y=kx+m与C交于P、Q两点,且直线AP与直线AQ的斜率之和为0,证明:直线PQ的斜率为定值。
解:


解题步骤:
1. 设直线方程
a. 设直线方程时,首先应该考虑直线k不存在的情况。
b. 在讨论k存在的时候,设直线方程时,如果题目中没有给出直线的任何信息,则直线的方程用斜截式设为:y=kx+m。
2. 直线与圆锥曲线联立方程,应用韦达定理
a. 应用韦达定理算出“x1+x2”与“x1x2”。
3. 根据题目所给出的关系列出等式,结合韦达定理,算出k与m的关系式
a. 结合韦达定理时,经常会出现y1+y2,y1y2,x1y2或x2y1的式子,这时需要用y1=kx1+m跟y2=kx2+m这两个等式将含y1,y2的式子全部用x1和x2来表示。
4. 得到k与m的关系式,结合题目所求,整理化简,求出定值
变式1:
已知椭圆C:
,设G(m,0)为椭圆C内的一个动点,过点G且斜率为k的直线L交轨迹C与A、B两点,当k为何值时?│GA│2+│GB│2是与m无关的定值,并求出该定值。
变式2:
已知椭圆C:
,过椭圆的右焦点作直线L交椭圆C与A、B两点,交y轴于M点,若
,求证λ1+λ2为定值。
二
相交弦的定值问题题目特点:从已知公共点或者公共直线上引两条直线,这两条直线分别与圆锥曲线交于两个未知点,根据题目所求式子,并结合韦达定理,确定定值。
例题:
已知椭圆C:
,已知点P(-2,t),Q(-2,-t)在椭圆C上,点A、B是椭圆C上不同于P、Q的两个动点,且满足:∠APQ=∠BPQ。问:直线AB的斜率是否为定值?请说明理由。

解:


解题步骤:
1.设两个弦所在的直线方程
a. 设直线方程时,首先应该考虑直线k不存在的情况。
b. 当k存在时,设两条弦所在直线的方程时,因为这两条直线均存在一个公共的已知点(或公共直线),所以通常用点斜式y-y0=k(x-x0),此处的(x0,y0)即为公共点。
2.根据题目已知条件确认两条弦所在直线斜率的关系,而后直线与曲线联立方程,应用韦达定理,求解未知点坐标
a. 应用韦达定理算出两根之和与两根之积。
b. 由于其中一个公共的交点已知,根据韦达定理以及直线方程可以算出另外两个未知交点的坐标(x1,y1)和(x2,y2),这两个坐标均含有参数k。
3.结合题目所求,算出定值
a.应用步骤2算出两点式(x1,y1)和(x2,y2)的坐标,根据题目所求,算出定值。
变式1:
如图,M(1,1)是抛物线上y2=x上的一点,动弦ME、MF分别交x轴与A、B两点,且│MA│=│MB│,若M为定点,证明:直线EF的斜率为定值。

变式2:
过抛物线y2=4x的焦点做两条互相垂直的弦AB,CD,判断
是否为定值,若为定值,求出定值。
三
其他的定值问题例题:
已知抛物线x2=4y的焦点为F,A,B是抛物线上的两个动点,且有
(λ>0),过A、B两点分别作抛物线的切线,设其交点为M,证明
为定值。
解:


定值问题总结:根据以上所汇总的圆锥曲线的定值问题,我们不难发现,对于求定值的问题通常有以下特点:
1.已知条件:
根据已知条件,通常题目中会给出一个等量关系
例题1中的等量关系为:KPA+KPQ=0
例题2中的等量关系为:∠APQ=∠BPQ
例题3中的等量关系为:
另外还有其他形式的等量关系,我们需要能从题目当中提取出来,例如:
a. 以线段AB为直径的圆过P点:AP⊥BP
b. 弦AB与CD相互垂直:KAB·KCD=-1
c. x轴或y轴为∠AOB的平分线,O为原点:KOA+KOB=0
d.
共线:KAB=KCD
2. 解题过程
通常圆锥曲线上有两个未知点,这时候设两个未知点的坐标为(x1,y1)和(x2,y2)
个别题目中只有一个未知点,这时设未知点的坐标为(x0,y0),并且大部分情况下,解题过程中还需要用到点(x0,y0)在圆锥曲线上这个等量关系。
另外,绝大多数情况下直线与圆锥曲线需要联立方程,并应用韦达定理。
3. 求解结论
求解定值的问题,都会根据所求的定值得到一个算式,常见的几个求定值的情况如下:
a. 斜率定值:如例1,例2,求k有两种解法,一种为直线(含k)与圆锥曲线联立方程方程,结合已知的等量关系,算出k值;另外一种,用两点坐标来算出k
b. 面积定值:在圆锥曲线中求三角形面积的问题,通常用S=1/2ah,其中a用弦长公式得到,h用点到直线的距离公式算出,最终结合三角形面积公式得到算式
c. 数量积定值:如例3,列出坐标,应用向量的数量积公式,等到一个算式
d. 斜率之积定值:分别应用两点坐标分别算出k值,然后相乘得到一个算式
e. 弦长定值:应用弦长公式或者两点间的距离公式,得到一个算式

本文详细介绍了圆锥曲线中涉及定值问题的解题方法,包括单条直线与曲线相交的定值问题、相交弦的定值问题以及其他类型的定值问题。通过具体的例题和变式,阐述了解题步骤,如设直线方程、应用韦达定理和利用等量关系求解定值。文章强调了提取题目中等量关系、设未知点坐标以及应用直线与曲线联立方程的重要性,并提供了多种求解定值问题的常见情况和技巧。
1080

被折叠的 条评论
为什么被折叠?



