167. 两数之和 II - 输入有序数组
给定一个已按照升序排列 的有序数组,找到两个数使得它们相加之和等于目标数。
函数应该返回这两个下标值 index1
和 index2
,其中 index1
必须小于 index2
。
说明:
- 返回的下标值(
index1
和index2
)不是从零开始的。 - 你可以假设每个输入只对应唯一的答案,而且你不可以重复使用相同的元素。
示例1 :
输入: numbers = [2, 7, 11, 15], target = 9
输出: [1,2]
解释: 2 与 7 之和等于目标数 9 。因此 index1 = 1, index2 = 2 。
来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/path-sum 著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
题解:
本题首先想到就应该是双指针法,思路也很简单,就是一个指针指向开头,另一个指针指向结尾,然后判断指针所指向的两数之和是否等于target
,如果相等就返回相应的index
;如果不等判断两数之和和target
的大小,如果和大于target
,则需要index2
向左移动以此来缩小和,如果和小于target
,则需要index1
向右移动以此来增大和。
具体代码如下:
class Solution {
public int searchInsert(int[] nums, int target) {
if (nums.length == 0) return -1;
int left = 0;
//这里用right = nums.length,下面的while循环条件就用left < right
//这里如果是right = nums.length - 1,下面的循环条件就是left <= right
//这是因为使用right = nums.length循环判等的话会出现越界
int right = nums.length;
while (left < right) {
int mid = left + (right - left) / 2; //防止left和right太大导致相加除二溢出
if (nums[mid] == target) { //如果target就是nums[mid]的值的话就直接返回
return mid;
}
if (target > nums[mid]) { //如果target比nums[mid]大,我们向右子区间收缩,所以这里需要left = mid + 1
left = mid + 1;
}
if (target < nums[mid]) {
//因为我们上面的right = nums.length,并且循环条件为left < right
//所以这里不能使用right = mid - 1,具体的大家可以debug观察结果
right = mid;
}
}
return left;
}
}
官方提示中还提到了二分查找,由于二分查找不能同时进行两个数的查找,我们最先能想到的就是固定一个数,然后去剩下的元素中找,看能不能找到一个值和target - numbers[i]
的值相等,如果能,则返回两者索引,如果不能,则返回-1
。
具体代码如下:
public class Solution {
public int[] twoSum(int[] numbers, int target) {
int right = numbers.length - 1;
//固定一个值,在剩下的元素中找一个数是否等于target - numbers[i]的值
for (int i = 0; i < numbers.length; i++) {
if (numbers[i] + numbers[right] == target) {
return new int[]{i + 1, right + 1};
}
int index2 = binarySearch(numbers, i + 1, right, target - numbers[i]);
if (index2 != -1) {
return new int[]{i + 1, index2 + 1};
}
}
return new int[]{-1, -1};
}
//手写binarySearch()方法,当然也可以直接调用Arrays.binarySearch()方法
public int binarySearch(int[] nums, int fromIndex, int toIndex, int target) {
int left = fromIndex;
int right = toIndex - 1;
while (left <= right) {
int mid = left + (right - left) / 2;
if (nums[mid] == target)
return mid;
else if (nums[mid] > target) {
right = mid - 1;
} else if (nums[mid] < target) {
left = mid + 1;
}
}
return -1;
}
}