调和级数 java,再探π^2/6

​ 我们知道无穷级数 $sum_{ngeq1} frac{1}{n}=O(nln n)$ 发散。事实上,质数的倒数和 $sum_{pin mathbb{P}} frac{1}{p}=O(nln ln n)$ 同样发散。简单证明可以看我的博客 《调和级数相关——质数的倒数和增长速度为O(ln ln n)》。

​ 尽管如此,平方的倒数和收敛(尽管收敛地很慢,我们将看到),而且收敛于一个有趣的数。欧拉级数

​ 这是 1734 年 Leonhard Euler 做出的一个经典、著名且重要的结果。这个事实的一个重要解释是它导出了 Riemann zeta 函数的第一个非平凡值 $zeta(2)=frac{pi^2}{6}$ 。不仅这一结果在数学史上有显赫的地位,它的几个极其优美聪明的证明也拥有自己的历史。本文就分享几个极为精妙的证明。

​ Euler 当然是十分聪明的,这个证明也十分优美。首先注意到 $sin x$ 的泰勒展开

​$$sin x=x-frac{x^3}{3!}+frac{x^5}{5!}-frac{x^7}{7!}+...$$

​ 从而

​$frac{sin x}{x}=1-frac{x^2}{3!}+frac{x^4}{5!}-frac{x^6}{7!}+...$

​ 令 $frac{sin x}{x}=0$ 解得 $x=k pi (k in mathbb{Z}$ 且 $k neq 0)$

​ 故我们将 $frac{sin x}{x}$ 因式分解

​$frac{sin x}{x}=(1-frac{x}{pi})(1+frac{x}{pi})(1-frac{x}{2pi})(1+frac{x}{2pi})(1-frac{x}{3pi})(1+frac{x}{3pi})...$

​$=(1-frac{x^2}{pi^2})(1-frac{x^2}{4pi^2})(1-frac{x^2}{9pi^2})...$

​ (Euler 似乎并没有证明这个因式分解的正确性。幸运的是,一个世纪以后,Weierstrass 提出了著名的 Weierstrass 分解定理,利用复分析证明了这个结论。)

​ 考虑这个因式分解的 $x^2$ 项前系数,对比泰勒展开式,可以知道

​$-(frac{1}{pi^2}+frac{1}{4pi^2}+frac{1}{9pi^2}+...)=-frac{1}{3!}=-frac{1}{6}$

​ 两边同乘 $-pi^2$ 即

​$sum_{n geq 1} frac{1}{n^2}=frac{pi^2}{6}$

​ 证毕

初等数学证明

​ 在所有证明中间,这个可能是最初等的证明。只需要知道三角函数和韦达定理,就可以基本上证明了。

​ 我们首先建立关于余切函数和多项式之间的关系

​$sum_{i=1}^{m} cot^2(frac{i}{2m+1}pi) =frac{2m(2m-1)}{6}$

​ 为了验证这个关系,我们从

​$cos nx +isin nx =(cos x +isin x)^n$

​ 开始,取虚部,得

​$sin nx =C_n^1 sin xcos^{n-1} x-C_n^3sin^3 xcos^{n-3} x+...$

​ 令 $n=2m+1$ ,两边同除 $sin^n x$ 得到

​$frac{sin((2m+1)x)}{sin^{2m+1} x} =C_{2m+1}^1 cot^{2m} x-C_{2m+1}^3 xcot^{2m} x+...$

​ 令 $x=frac{i}{2m+1}pi (i=1,2,…,m)$ ,左边 $sin((2m+1)x)=0$ ,于是都有

​$0=C_{2m+1}^1 cot^{2m} x-C_{2m+1}^3 xcot^{2m} x+...$

​ 因此方程

​$C_{2m+1}^1t^m-C_{2m+1}^3t^{m-1}+...+(-1)^mC_{2m+1}^{2m+1}=0$

​ 有 $m$ 个不同的根

​$t_i=cot^2(frac{i}{2m+1}pi) (i=1,2,...,m)$

​ 由韦达定理可知 $m$ 根之和为

​$sum_{i=1}^{m} cot^2(frac{i}{2m+1}pi) =frac{C_{2m+1}^{3}}{C_{2m+1}^{1}}=frac{2m(2m-1)}{6}$

​ 这样我们就得到了关于余切函数和多项式之间的关系。根据余割函数和余切函数之间的关系,同样的我们也可以建立余割函数和多项式之间的关系

​$sum_{i=1}^{m} csc^2(frac{i}{2m+1}pi) =sum_{i=1}^{m} 1+cot^2(frac{i}{2m+1}pi) =frac{2m(2m-1)}{6}+m=frac{2m(2m+1)}{6}$

​ 这样我们的准备工作已经全部准备好了,现在到了大展身手的时候

​ 考虑 $yin(0,frac{pi}{2})$ 有

​$0

​ 从而

​$0

​ 这表明

​$0

​ 现在把 $t$ 的 $m$ 个不同根带入,左边用余切函数平方和,右边用余割函数平方和,可以得到

​$frac{2m(2m-1)}{6}

​ 两边同乘 $frac{(2m+1)^2}{pi^2}$ 可得

​$frac{pi^2}{6}frac{2m(2m-1)}{(2m+1)^2}

​ 当 $m$ 趋近于 $infty$ 时,左右两端都收敛到 $frac{pi^2}{6}$ 。证毕。

还有一些极为简短的证明,下面分享两个。

傅里叶分析

​ 考虑函数 $f(x)=x^2$ ,$xin (-pi,pi) $ ,将其傅里叶展开

​$f(x)=frac{pi^2}{3}+sum_{n=1}^{infty} ((-1)^nfrac{4}{n^2}cos nx)$

​ 显而易见,带入 $f(0)$ 即可得到答案

伯努利数的证明

​ 函数 $B(x)=frac{x}{e^x-1}$ 是伯努利数 $B_k$ 的生成函数,有 $B$ 是亚纯,且只在 $2npi i$ 处有极点,利用Mittag-Leffler定理可以展开为

​$frac{x}{e^x-1}=sum_ {ninmathbb{Z}}frac{2npi i}{x-2npi i}=sum_{ninmathbb{Z}}-frac{1}{1-frac{x}{2npi i}}=-sum _{ninmathbb{Z}} (frac{x}{2npi i})^k =sum _{n geq 0} (-1)^{n+1}frac{2zeta(2n)}{(2pi)^{2n}}x^{2n}$

​ 其中 $zeta(s)$ 为Riemann zeta 函数,对实数 $s>1$ 定义为 $zeta(s)=sum_{n geq 1} frac{1}{n^s}$

​ 只剩下偶数项是因为几何级数正负相消了,同时我们也可以得到奇数项的伯努利数为 $0$ ,对比偶数项可知

​$B_{2n}=(-1)^{n+1}frac{2zeta(2n)}{(2pi)^{2n}}$

​ 所以 $frac{2zeta(2)}{(2pi)^{2}}=B_2=frac{1}{12}$ ,于是 $zeta(2)=frac{pi^2}{6}$ ,证毕。

应用:任意两个正整数互质的概率

​ 为了求任意两个正整数互质的概率。记 $p_i$ 为从小到大第 $i$ 个质数。则有任意一个正整数被 $p_i$ 整除的概率为$frac{1}{p_i}$ ,故任选两个正整数都被 $p_i$ 整除的概率为 $frac{1}{p_i^2}$ 。于是可以得到任意两个正整数互质的概率为

​$Pi _{i in mathbb{N}*} (1-frac{1}{p_i^2}) =frac{1}{Pi _{i in mathbb{N}*} frac{1}{1-frac{1}{p_i^2} }} =frac{1}{Pi _{i in mathbb{N*}}(1+frac{1}{p_i^2}+frac{1}{p_i^4}+frac{1}{p_i^6}+...) }=frac{1}{sum _{n in mathbb{N*}}frac{1}{n^2}}=frac{6}{pi^2}$

​​ 其中

​$Pi _{i in mathbb{N*}}(1+frac{1}{p_i^2}+frac{1}{p_i^4}+frac{1}{p_i^6}+...) =sum _{n in mathbb{N*}}frac{1}{n^2}$

​ 是由于算数基本定理,任何正整数质因数分解唯一。

故任意两个正整数互质的概率为 $frac{6}{pi^2} $ 。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值