Problem Description
某省调查城镇交通状况,得到现有城镇道路统计表,表中列出了每条道路直接连通的城镇。省政府“畅通工程”的目标是使全省任何两个城镇间都可以实现交通(但不一定有直接的道路相连,只要互相间接通过道路可达即可)。问最少还需要建设多少条道路?
Input
测试输入包含若干测试用例。每个测试用例的第1行给出两个正整数,分别是城镇数目N ( < 1000 )和道路数目M;随后的M行对应M条道路,每行给出一对正整数,分别是该条道路直接连通的两个城镇的编号。为简单起见,城镇从1到N编号。
注意:两个城市之间可以有多条道路相通,也就是说
3 3
1 2
1 2
2 1
这种输入也是合法的
当N为0时,输入结束,该用例不被处理。
Output
对每个测试用例,在1行里输出最少还需要建设的道路数目。
Sample Input
4 2 1 3 4 3 3 3 1 2 1 3 2 3 5 2 1 2 3 5 999 0 0
Sample Output
1 0 2 998
原创代码解析
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
//并查集
int ac[1001];
int num[1001];
int n,m;
//递归的找老大
int find(int x) {
if (x != ac[x])//x不是老大
ac[x] = find(ac[x]);
return ac[x];
}
//非递归的找老大
//int find(int x)
//{
// int r=x;
// while(r!=ac[r])
//
// {
//
// int j;
// r=ac[r];
// j=ac[x];
// ac[x]=r;
// x=j;
// }
// return r;
//}
void join(int d,int t)
{
int fx=find(d);//找老大
int fy=find(t);
if(fx!=fy){
ac[fy]=fx;
}
}
int main(){
while(scanf("%d",&n)&&n!=0){//城市
scanf("%d",&m);//道路条数
int x,y;
int sum=0;
memset(num,0,sizeof(num));//初始化,记录num[j]为老大
//初始化,开始各点都是自己的老大
for(int i=1;i<=n;i++){
ac[i]=i;
}
for(int i=1;i<=m;i++){
scanf("%d %d",&x,&y);//点到点
join(x,y);//合并
}
for(int i=1;i<=n;i++)
{
num[find(i)]=1; //找老大的点并且标记为1,
}
//有N个老大即num[]中有几个1
for(int i=1;i<=n;i++){
if(num[i]==1){
sum++;
}
}
//需要 N-1个联系
printf("%d\n",sum-1);
}
return 0;
}
关于并查集
一篇不错的文
地址 :http://blog.csdn.net/niushuai666/article/details/6662911