hmm 求隐藏序列_隐马尔可夫模型(HMM)总结

本文详细介绍了隐马尔科夫模型(HMM)的概念、算法推导,包括前向算法、后向算法、 Baum-Welch算法和维特比算法,并探讨了HMM的优缺点及适用场景。HMM常用于序列标注任务,如中文分词,通过求解HMM可得到状态序列。与条件随机场(CRF)相比,HMM模型较为简单,但限制较多,如无法充分利用上下文信息。
摘要由CSDN通过智能技术生成

摘要:

1.算法概述

2.算法推导

3.算法特性及优缺点

4.注意事项(算法过程,调参等注意事项)

5.实现和具体例子

6.适用场合

内容:

1.算法概述

隐马尔科夫模型(Hidden Markov Model)是关于时序的概率模型,描述由一个隐含的马尔科夫链生成不可观测的状态序列,再由状态序列生成观测序列的过程。这种通过观测序列预测隐含的标记序列的问题叫做标注。

下图来自维基百科:

并且本文有如下符号表示:

其中

就是我们需要求得的一个三元组;拿中文分词的例子来说,分词中的状态序列是{ Begin,Middle,End,Single },对应单个字成词的就是Single,双连词就是{Begin,End},三联词就是{Begin,Middle,End}。而我们观测到的就是一个句子;通过HMM实现的分词算法可以通过

求得初始{ Begin,Middle,End,Single }这四个状态的分布,以及各个状态间相互转移的条件概率矩阵,当前状态对应一个中文词(Unicode编码)的条件概率矩阵。另一个直观的例子来自《统计学习方法》,是给定4个盒子(4个状态),每个盒子有若干红,白小球,给定一个观测序列,求对应盒子的序列。

最后马尔科夫模型的两个基本假设:

1.齐次马尔科夫假设:马尔科夫链的当前状态之和其前一刻的状态有关,与其它状态无关;对应的概率语言是:

2.观测独立性假设:当前的观测只与该时刻的马尔科夫链相关,与其它观测及状态无关;对应的概率语言是:

2.算法推导

以下可以看作是HMM算法的一步步拆分,并且依次加深理解:

1.在模型给定下求观测序列的概率,即

前向算法(动态规划算法):求观测序列为y1,y2,...,yt,并且t时间点对应状态

的概率

后向算法(动态规划算法):已知t时间点对应状态

,求观测序列y(t+1),y(t+2),...,y(T)的概率

               

2.求解模型参数,使用对数极大似然估计,

,得到三元组

1)建立目标函数:                                  2)拆分三项:

             

由概率加和为1,建立拉格朗日函数,求得三个最大化的

    

            

3.求最可能的状态序列,即

:维特比算法

3.算法特性及优缺点

1.按照HMM 的假设,HMM模型是无记忆性的,不能利用上下文的信息。因为它只与其前一个状态有

关,如果想利用更多的已知信息,必须建立高阶的HMM 模型。

2.HMM学到的是状态和观察序列的联合分布P(Y,X),而预测问题中,我们需要的是条件概率P(Y|X)。

4.注意事项(算法过程,调参等注意事项)

确定隐含变量个数

5.实现和具体例子

6.适用场合

7.与CRF比较:

1.CRF是一种判别式模型,CRF是一种无向图;HMM相反

2.CRF是在全局范围内统计归一化的概率,是全局最优的解;HMM相反

3.CRF没有HMM那样严格的独立性假设条件,因而可以容纳任意的上下文信息。特征设计灵活;;HMM相反

基于隐马尔科夫模型(HMM)的地图匹配(Map-Matching)算法

文章目录 1. 1. 摘要 2. 2. Map-Matching(MM)问题 3. 3. 隐马尔科夫模型(HMM) 3.1. 3.1. HMM简述 3.2. 3.2. 基于HMM的Map-Matchi ...

隐马尔科夫模型HMM学习最佳范例

谷歌路过这个专门介绍HMM及其相关算法的主页:http://rrurl.cn/vAgKhh 里面图文并茂动感十足,写得通俗易懂,可以说是介绍HMM很好的范例了.一个名为52nlp的博主(google ...

猪猪的机器学习笔记(十七)隐马尔科夫模型HMM

隐马尔科夫模型HMM 作者:樱花猪 摘要: 本文为七月算法(julyedu.com)12月机器学习第十七次课在线笔记.隐马尔可夫模型(Hidden Markov Model,HMM)是统计模型,它用来 ...

隐马尔科夫模型HMM(二)前向后向算法评估观察序列概率

隐马尔科夫模型HMM(一)HMM模型 隐马尔科夫模型HMM(二)前向后向算法评估观察序列概率 隐马尔科夫模型HMM(三)鲍姆-韦尔奇算法求解HMM参数(TODO) 隐马尔科夫模型HMM(四)维特比算法 ...

隐马尔科夫模型HMM(一)HMM模型

隐马尔科夫模型HMM(一)HMM模型基础 隐马尔科夫模型HMM(二)前向后向算法评估观察序列概率 隐马尔科夫模型HMM(三)鲍姆-韦尔奇算法求解HMM参数(TODO) 隐马尔科夫模型HMM(四)维特比 ...

隐马尔科夫模型HMM(三)鲍姆-韦尔奇算法求解HMM参数

隐马尔科夫模型HMM(一)HMM模型 隐马尔科夫模型HMM(二)前向后向算法评估观察序列概率 隐马尔科夫模型HMM(三)鲍姆-韦尔奇算法求解HMM参数(TODO) 隐马尔科夫模型HMM(四)维特比算法 ...

隐马尔科夫模型HMM(四)维特比算法解码隐藏状态序列

隐马尔科夫模型HMM(一)HMM模型 隐马尔科夫模型HMM(二)前向后向算法评估观察序列概率 隐马尔科夫模型HMM(三)鲍姆-韦尔奇算法求解HMM参数 隐马尔科夫模型HMM(四)维特比算法解码隐藏状态 ...

用hmmlearn学习隐马尔科夫模型HMM

在之前的HMM系列中,我们对隐马尔科夫模型HMM的原理以及三个问题的求解方法做了总结.本文我们就从实践的角度用Python的hmmlearn库来学习HMM的使用.关于hmmlearn的更多资料在官方文 ...

HMM:隐马尔可夫模型HMM

http://blog.csdn.net/pipisorry/article/details/50722178 隐马尔可夫模型 隐马尔可夫模型(Hidden Markov Model,HMM)是统计模 ...

机器学习之隐马尔科夫模型HMM(六)

摘要 隐马尔可夫模型(Hidden Markov Model,HMM)是统计模型,它用来描述一个含有隐含未知参数的马尔科夫过程.其难点是从可观察的参数中确定该过程的隐含参数,然后利用这些参数来作进一步 ...

随机推荐

功能实现:PLC对LPC的音量控制

设计方案1: 在PLC上,当使用QDial调节音量时,触发QDial的SIGNAL:ValueChange(),对应SLOT向LPC发送自定义键码0x22; 在LPC上,当接收到0x22键码时,执行操 ...

【nodejs笔记4】搭建多人博客<内含http请求的get post方法区别>

功能分析 博客具有四个功能:注册  登录  登出  发表文章 界面设计 未登录: [主页  注册页  登录页] [主页] 主页 左侧 HOME                             ...

select选择框内容左右移动添加删除栏(升级)

先看一下之前的版本(10年前的作品了) 新版增加了拖动事件(双向及本列),双击左右自动移动,修正了算法性能更好: 也更新了如果姓名长度太长显示变形问题

jeos没有消亡,但看 debian 的 netinst .iso格式,那就是jeos的系统!

曾经ubuntu推出专供轻量硬件(如虚拟机)方式的just os格式的.iso [小巧.轻量.快速.干净] 但在 ubuntu 8.04后 再也没有继续 ...... 可惜 不曾想,ubuntu的老爸 ...

Java处理InterruptedException异常小结

对于InterruptedException,一种常见的处理方式是捕捉它,然后什么也不做(或者记录下它,不过这也好不到哪去).不幸的是,这种方法忽略了这样一个事实:这期间可能发生中断,而中断可能导致应 ...

iOS-开发日志-UITextView介绍

UITextView 属性 1.     text: 设置textView中文本 _textView.text = @"Now is the time for all good develo ...

C/C++生成随机数

一.rand和srand   在C++11标准出来之前,C/C++都依赖于stdlib.h头文件的rand或者srand来生成随机数.   其不是真正的随机数,是一个伪随机数,是根据一个数(我们可以称 ...

CentOS 7 增加磁盘分区挂载(lvm)

1.查看主机现有磁盘情况 # fdisk -l 现在主机中存在一块8G的磁盘sdb,尚未分区挂载,所以需将磁盘进行分区挂载. 2.对磁盘进行分区 # fdisk /dev/sdb   (选择要操作分区 ...

Sqlite3数据库查看工具

SQLiteSpy     小巧便捷,免安装,占空间小. 推荐 http://www.softpedia.com/get/Internet/Servers/Database-Utils/SQLiteS ...

solr简介与安装

solr简介: Solr 是Apache下的一个顶级开源项目,采用Java开发,它是基于Lucene的全文搜索服务器.Solr提供了比Lucene更为丰富的查询语言,同时实现了可配置.可扩展,并对索引 ...

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值