支持向量机的基本思想_支持向量机的分类思想

9df2bc4d70bda281a378845b872f64fa.png

支持向量机是一种经典的机器学习算法,在小样本数据集的情况下有非常广的应用。本文将循序渐进地讲解支持向量机的分类思想。

目录:

  • 函数间隔和几何间隔
  • 支持向量机的分类思想
  • 总结

1.函数间隔和几何间隔

为了能够更好的阐述支持向量机的分类思想,需要理解函数间隔和几何间隔的定义。

1.点到超平面的距离

假设超平面方程:

到平面的距离:

1369967a419450e8b3fd14c9af3ddb73.png

由上式可得:

,没有分类信息,而函数间隔和几何间隔不仅包含了距离信息,还包含了分类信息。

2.函数间隔和几何间隔

对于给定的训练数据集T,正样本和负样本分别为+1和-1,我们对式(1.1)稍微进行了修改:

(1) 点到平面的距离不作规范化处理,得:

(2) 去掉绝对值符号,并乘以标记结果y0,得:

d2表达式就是函数间隔的定义,有两层含义:大小表示点P0到超平面的距离,正负表示点P0是否正确分类,若d<0,分类错误;反之,则分类正确。

因此,定义点到超平面的函数间隔为:

接着定义训练数据集T的函数间隔是所有样本点(xi,yi)的函数间隔的最小值,即:

其中,

但是,若成比例的增加超平面参数w和b,超平面没有改变,但是函数间隔却成比例的增加了,这是不符合理论的,因此,需要对函数间隔进行规范化,得:

(1.7)式就是几何间隔的定义,几何间隔的值是确定的。

2.支持向量机的分类思想

1.感知机和logistic回归的分类思想

感知机的损失函数为所有误分类点到超平面的距离之和:

无误分类点时,损失函数为0,满足模型分类条件的超平面有无数个,如下图:

a1336a9279ecdd626a5b71472d29fe52.png

初始超平面为l1,误分类点为红色框,最小化式(2.1)有无穷多个满足损失函数为0的超平面,如上图的l2~ln,然而,最佳分类超平面只有一个,即支持向量机所对应的超平面。

假设logistic回归的模型是

,logisitc回归的损失函数:

简单地分析(2.2)式的分类思想:

(1) 当yi=1时,损失函数简化为:

若要损失函数

越小越好,则xi的值越大越好,如下图:

b1950b7c0c08ed97f57cca9112ed172b.png

往箭头方向移动时,损失函数
逐渐变小。

(2) 当yi=0时,损失函数

简化为:

若要损失函数

越小越好,则xi的值越小越好,如下图:

22136965a1f945eb749a9ce56f4413c1.png

往箭头方向移动时,损失函数
逐渐变小。

2.支持向量机的分类思想

支持向量机结合了感知机和logistic回归分类思想,假设训练样本点(xi,yi)到超平面H的几何间隔为

,由上节定义可知,几何间隔是点到超平面最短的距离,如下图的红色直线:

de278fa88ab80a50792ac5dbf4dd28d3.png

用logistic回归模型分析几何间隔:

因此,当

越大时,损失函数越小,结果为正样本的概率也越大。

因此,感知机的分类思想是最大化点到超平面的几何间隔,这个问题可以表示为下面的约束最优化问题:

根据几何间隔和函数间隔的关系,得几何间隔的约束最优化问题:

函数间隔是样本点到超平面的最短距离,因此,令函数间隔为常数1,那么其他样本点到超平面的距离都大于1,且最大化

和最小化
是等价的。于是就得到了下面的最优化问题:

由(2.8)(2.9)式,解得最优解

,易知最优超平面到正负样本的几何间隔相等。

总结

本文结合了感知机和logistic回归的分类思想来推导支持向量机的最优化问题,即最大间隔分离超平面。

参考:

李航 《统计学习方法》

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值