问题描述
X 国的一个网络使用若干条线路连接若干个节点。节点间的通信是双向的。某重要数据包,为了安全起见,必须恰好被转发两次到达目的地。该包可能在任意一个节点产生,我们需要知道该网络中一共有多少种不同的转发路径。
源地址和目标地址可以相同,但中间节点必须不同。
如下图所示的网络。
1 -> 2 -> 3 -> 1 是允许的
1 -> 2 -> 1 -> 2 或者 1 -> 2 -> 3 -> 2 都是非法的。
输入格式
输入数据的第一行为两个整数N M,分别表示节点个数和连接线路的条数(1<=N<=10000; 0<=M<=100000)。
接下去有M行,每行为两个整数 u 和 v,表示节点u 和 v 联通(1<=u,v<=N , u!=v)。
输入数据保证任意两点最多只有一条边连接,并且没有自己连自己的边,即不存在重边和自环。
输出格式
输出一个整数,表示满足要求的路径条数。
样例输入1
3 3
1 2
2 3
1 3
样例输出1
6
样例输入2
4 4
1 2
2 3
3 1
1 4
样例输出2
10
#include<iostream>
#include<vector>
using namespace std;
vector<int> vc[10001];
int cnt = 0;
void dfs(int pre,int cur,int rest_step){ //cur表示当前节点,pre表示当前节点的前一节点,
//rest_step表示剩余步数
if(rest_step == 0){
cnt++;
return;
}
for(int i = 0;i < vc[cur].size();i++){
if(vc[cur][i] == pre){
continue;
}
dfs(cur,vc[cur][i],rest_step - 1);
}
}
int main(){
int n;
int m;
cin>>n>>m;
for(int i = 0;i < m;i++){
int a,b;
cin>>a>>b;
vc[a].push_back(b);
vc[b].push_back(a);
}
for(int i = 1;i <= n;i++){
dfs(-1,i,3);
}
cout<<cnt;
return 0;
}