目录
项目背景
TensorFlow介绍
环境搭建
模型选用
Api使用说明
运行路由
小结
项目背景
产品看到竞品可以标记物体的功能,秉承一贯的他有我也要有,他没有我更要有的作风,丢过来一网站,说这个功能很简单,一定可以实现
这时候万能的谷歌发挥了作用,在茫茫的数据大海中发现了Tensorflow机器学习框架,也就是目前非常火爆的的深度学习(人工智能),既然方案已有,就差一个程序员了
Tensorflow介绍
百科介绍:TensorFlow是谷歌基于DistBelief进行研发的第二代人工智能学习系统,可被用于语音识别或图像识别等多项机器学习和深度学习领域。
翻译成大白话:是一个深度学习和神经网络的框架,底层C++,通过Python进行控制,当然,也是支持Go、Java等语言
环境搭建
Linux/Unix(笔者使用Mac)
Python3.6
protoc 3.5.1
tensorflow 1.7.0
1、克隆文件
文件目录格式如下
└── tensorflow
├── Dockerfile
├── README.md
├── data
│ ├── models
│ ├── pbtxt
│ └── tf_models
├── object_detection_api.py
├── server.py
├── sh
│ ├── download_data.sh
│ └── ods.sh
├── static
├── templates
└── upload
data/models 存放
data/pbtxt 物体标识名称
data/tf_models 存放tensorflow/models数据
2、安装依赖库
pip3 install -r requirements.txt
3、下载模型
sh sh/download_data.sh
4、添加环境变量PYTHONPATH
echo 'export PYTHONPATH=$PYTHONPATH:pwd/data/tf_models/models/research'>> ~/.bashr