86 商店购物
作者: xxx时间限制: 1S章节: 结构体
问题描述 :
在商店中,每一种商品都有一个价格(用整数表示)。例如,一朵花的价格是 2 zorkmids (z),而一个花瓶的价格是 5z 。为了吸引更多的顾客,商店举行了促销活动。
促销活动把一个或多个商品组合起来降价销售,例如: 三朵花的价格是 5z 而不是 6z, 两个花瓶和一朵花的价格是 10z 而不是 12z。
编写一个程序,计算顾客购买一定商品的花费,尽量利用优惠使花费最少。
尽管有时候添加其他商品可以获得更少的花费,但是你不能这么做。
对于上面的商品信息,购买三朵花和两个花瓶的最少花费是:以优惠价购买两个花瓶和一朵花(10z),以原价购买两朵花(4z)
输入说明 :
输入包括一些商店提供的优惠信息,接着是购物清单。
第一行 优惠商品的种类数(0 <= s <= 99)。
第二行…第s+1 行 每一行都用几个整数来表示一种优惠方式。
第一个整数 n (1 <= n <= 5),表示这种优惠方式由 n 种商品组成。后面 n 对整数 c 和 k 表示 k (1 <= k <= 5)个编号为 c (1 <= c <= 999)的商品共同构成这种优惠,最后的整数 p 表示这种优惠的优惠价(1 <= p <= 9999)。优惠价总是比原价低。
第 s+2 行 这一行有一个整数 b (0 <= b <= 5),表示需要购买 b 种不同的商品。
第 s+3 行…第 s+b+2 行 这 b 行中的每一行包括三个整数:c ,k ,和 p 。c 表示唯一的商品编号(1 <= c <= 999),k 表示需要购买的 c 商品的数量(1 <= k <= 5)。p 表示 c 商品的原价(1<= p <= 999)。
最多购买 5*5=25 个商品。
输出说明 :
只有一行,输出一个整数:购买这些物品的最低价格。
输入范例 :
4
2 81 1 62 1 149
2 62 1 113 1 147
2 113 1 34 1 77
2 81 1 34 1 75
4
81 1 27
62 2 135
113 3 27
34 4 56
输出范例 :
558
#include<stdio.h>
#define INF 0x3f3f3f3f
#define min(a,b) a>b?b:a
struct Node{
int n[10];
int p;
}a[1000];
int vis[10],size[10],dp[10][10][10][10][10];
int main(){
int i,n,p,T;
int cnt = 0;
scanf("%d",&n);
for(i = 1;i <= n;i++){
int num;
scanf("%d",&num);
for(int j = 1;j <= num;j++){
int x,y;scanf("%d%d",&x,&y);
if(vis[x] == 0){
vis[x] = ++cnt;
}
a[i].n[vis[x]] = y;
}
p;
scanf("%d",&p);
a[i].p = p;
}
scanf("%d",&T);
for(i = 1;i <= T;i++){
int x,y,z;scanf("%d%d%d",&x,&y,&z);
if(vis[x] == 0){
vis[x] = ++cnt;
}
n++;
a[n].n[vis[x]] = 1;
a[n].p = z;
size[i] = y;
}
for(int i1 = 0;i1 <= 5;i1++){
for(int i2 = 0;i2 <= 5;i2++){
for(int i3 = 0;i3 <= 5;i3++){
for(int i4 = 0;i4 <= 5;i4++){
for(int i5 = 0;i5 <= 5;i5++){
dp[i1][i2][i3][i4][i5] = INF;
}
}
}
}
}
dp[0][0][0][0][0] = 0;
for(int x = 1;x <= n;x++)
{
for(int i = a[x].n[1];i <= size[1];i++)
{
for(int j = a[x].n[2];j <= size[2];j++)
{
for(int ci = a[x].n[3];ci <= size[3];ci++)
{
for(int cj = a[x].n[4];cj <= size[4];cj++)
{
for(int q = a[x].n[5];q <= size[5];q++)
{
dp[i][j][ci][cj][q] =
min(dp[i][j][ci][cj][q],dp[i - a[x].n[1]][j - a[x].n[2]][ci - a[x].n[3]][cj - a[x].n[4]][q - a[x].n[5]] + a[x].p);
}
}
}
}
}
}
printf("%d\n",dp[size[1]][size[2]][size[3]][size[4]][size[5]]);
return 0;
}