78 铺地毯
作者: Turbo时间限制: 1S章节: 结构体
问题描述 :
为了准备一个学生节,组织者在会场的一片矩形区域(可看做是平面直角坐标
系的第一象限)铺上一些矩形地毯。一共有n 张地毯,编号从1 到n。现在将这些地毯按照
编号从小到大的顺序平行于坐标轴先后铺设,后铺的地毯覆盖在前面已经铺好的地毯之上。
地毯铺设完成后,组织者想知道覆盖地面某个点的最上面的那张地毯的编号。注意:在矩形
地毯边界和四个顶点上的点也算被地毯覆盖。
输入说明 :
输入共 n+2 行。
第一行,一个整数 n,表示总共有n 张地毯。
接下来的 n 行中,第i+1 行表示编号i 的地毯的信息,包含四个正整数a,b,g,k,每
两个整数之间用一个空格隔开,分别表示铺设地毯的左下角的坐标(a,b)以及地毯在x
轴和y 轴方向的长度。
第 n+2 行包含两个正整数x 和y,表示所求的地面的点的坐标(x,y)。
0≤n≤10,000,0≤a, b, g, k≤100,000。
输出说明 :
输出共 1 行,一个整数,表示所求的地毯的编号;若此处没有被地毯覆盖则输出-1。
输入范例 :
3
1 0 2 3
0 2 3 3
2 1 3 3
2 2
输出范例 :
3
import java.util.LinkedList;
import java.util.Scanner;
public class test_78 {
/**
* 78 铺地毯
*/
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
sc.nextLine();
int x,y;
LinkedList<String[]> lists = new LinkedList<>();
for (int i = 1; i <= n ; i++) {
lists.addLast(sc.nextLine().replace(" ", " ").trim().split(" "));
}
x = sc.nextInt();
y = sc.nextInt();
int max = -1;
int xStart,xEnd,yStart,yEnd;
String[] strings;
for (int i = 0; i < lists.size(); i++) {
strings = lists.get(i);
xStart = Integer.parseInt(strings[0]);
xEnd = Integer.parseInt(strings[0])+Integer.parseInt(strings[2]);
yStart = Integer.parseInt(strings[1]);
yEnd = Integer.parseInt(strings[1])+Integer.parseInt(strings[3]);
if(x<=xEnd && x>=xStart && y<=yEnd && y>=yStart && max<i){
max = i;
}
}
if(max==-1){
System.out.println(-1);
}else {
System.out.println(max+1);
}
}
}