为什么样本方差(sample variance)的分母是 n-1?

目录

1 样本方差和总体方差

2 问题描述

3 为什么可以用​来近似​?

4 为什么使用​替代​之后,分母是1/(n-1)

1 样本方差和总体方差

        我们通常所说的方差有两种,一种是样本方差,一种是总体方差。当求样本方差的时候,分母是n-1;当求总体方差的时候,分母是n。在数理统计中,一般所求的都是样本方差,这就需要构造一个统计量样本方差S^2(注意这是一个随机变量),需要使构造的统计量的期望与总体方差相等,这样才能使统计量具有无偏性

        在小学数学,也可能是初中数学中才能遇到求总体方差的情形,比如,一个班50个人,每个人的数学成绩都知道,让你求平均数和方差。这时所说的方差就是总体方差了,这里不存在任何采样的问题,所以没有随机变量,也没有期望这个概念。

       我们为什么要求样本方差呢?例如,在一个超大总体中,假如有一亿个数据,我想知道这个总体的方差是多少。去统计这一亿个数据是非常困难的,所以我们希望通过对总体抽取一万个样本,通过对样本方差的计算来估计出总体方差。这就需要我们来构造一个合适的统计量S^2来估计总体方差

       下面说一下为何求样本方差的时候要除以n-1。首先我们可能会问统计量S^2到底如何构造呢?其实可以任意构造,但是你构造的统计量不一定能很好的估计总体中的未知参数。判断构造的统计量的好坏有三个标准:无偏性有效性相合性(这里我们只谈无偏性)。

        无偏性,是指对未知参数构造的统计量,该统计量的期望等于要估计的参数

            

2 问题描述

问题完整的描述如下:

        如果已知随机变量期望,那么可以如下计算方差

            

        上面的式子需要知道具体分布是什么(在现实应用中往往不知道准确分布),计算起来也比较复杂。所以实践中常常采样之后,用下面这个来近似

          

        其实现实中,往往连的期望也不清楚,只知道样本的均值

        

        那么可以这么来计算

         

        那这里就有两个问题了:

  • 为什么可以用来近似
  • 为什么使用替代之后,分母是

3 为什么可以用来近似

        举个例子,假设服从这么一个正态分布:

               

       即,,图形如下:

当然,现实中往往并不清楚服从的分布是什么,具体参数又是什么?所以我用虚线来表明我们并不是真正知道的分布

很幸运的,我们知道,因此对采样,并通过:

        

来估计,某次采样计算出来的

看起来比要小。采样具有随机性,我们多采样几次,会围绕上下波动:

作为的一个估计量,算是可以接受的选择。

很容易算出:

因此,根据中心极限定理,的采样均值会服从的正态分布:

这也就是所谓的无偏估计量。从这个分布来看,选择作为估计量确实可以接受。

4 为什么使用替代之后,分母是1/(n-1)

        更多的情况,我们不知道是多少的,只能计算出。不同的采样对应不同的

      

对于某次采样而言,当时,下式取得最小值:

我们也是比较容易从图像中观察出这一点,只要偏离,该值就会增大:

所以可知:

可推出:

进而推出:

如果用下面这个式子来估计:

那么采样均值会服从一个偏离的正态分布:

        可见,此分布倾向于低估

        用公式来解释:

             

     

        也就是说,除非否则一定会有<=

        具体小了多少,我们可以使用两种方法来计算,计算之前需要先了解的公式:

        1.方差计算公式:  

                 

                  

        2. 均值的均值、方差计算公式:

             

     方法一:

                    

                  其中:

      方法二:

                   ​​​​​​​

              因为: 

                       

              所以有:

                        

所以:

        

也就是说,低估了,进行一下调整:

        

因此使用下面这个式子进行估计,得到的就是无偏估计:

          

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值