python数据可视化之matplotlib_Python数据可视化之Matplotlib学习笔记

Python数据可视化之Matplotlib学习笔记

1、简介

Matplotlib是Python最著名的绘图库,它提供了一整套类似Matlab的API,非常适合交互式绘图。

它的文档相当完备,并且 Gallery页面(http://matplotlib.org/gallery.html) 中有上百幅缩略图,打开之后都有源程序。因此如果你需要绘制某种类型的图,只需要在这个页面中浏览/复制/粘贴一下,基本上都能搞定。

2、导入模块

导入Matplotlib的快速绘图模块pyplot,由于Matplotlib在绘图过程中的数据处理是基于Numpy的,所以通常也同时导入Numpy。

import numpy as np

import matplotlib.pyplot as plt

Matplotlib还提供了pylab模块,pylab将许多常见的module(比如numpy,pyplot的常用函数等)集中到一个nameplace下面,提供一个类似Matlab的工作环境,所以使用者无需自行import所有所需功能。但是导入功能明确是个好习惯,让命名空间干净一些,一般的编程使用pyplot就行了,尽量避免使用Pylab。

3、快速绘图

(1)调用一个绘图对象,使他成为当前的绘图对象

plt.figure(num = 1, figsize = (8,6), dpi = 600, facecolor = 'r', edgecolor = 'g', frameon = True)

参数一,num:表示创建绘图对象或当前绘图对象的编号

参数二,figsize:表示绘图对象的大小

参数三,dpi:表示绘图对象Dots Per Inch(每英寸所打印的点数)

参数四,facecolor:表示绘图对象边框的颜色,如下图红色边框

参数五,edgecolor:暂时没弄清楚是表示哪一块的颜色 = =

参数六,frameon:表示是否要边框,也就是上图红色那块部分,但是即使选择False,既然会保留坐标轴及数字。

其他参数:还有一些其他参数,但是我觉得一般绘图基本用不到,也就没有再介绍,具体可参见官方文档。

(2)使用plot模块绘图

A、画曲线

plt.plot(x, y, 'r-o', label = '$line$', linewidth = 2)

参数解释:

x,y:将x,y数组传递给plot模块绘制曲线

label : 表示图例,此图例在legend中显示,加入后,中间的公式会用matplotlib内置的latex引擎绘制数学公式。

linewidth:表示线宽

‘r-o’:指定曲线的样式。

还可以在一个区域内绘制叠加图,使用一条语句

x = np.arange(1, 5, 0.1)

plt.plot(x, x, 'r-', x, x*x, 'go', x, x*x*x, 'm^')

B、画柱状图

plt.bar(left = (1,2,3,4), height = (2,3,1,5), width = 0.5, align = 'center', yerr = 0.00001, color = 'grey')

left:表示每个柱体左下端的X轴的坐标

height:表示每个柱体的高度

width:表示每个柱体的柱宽

align:表示对齐方式,文字居中

yeer:表示最高柱体距离顶部预留一定位置

color :表示柱体的颜色

附官方文档的样式库:

character description

'-' solid line style

'--' dashed line style

'-.' dash-dot line style

':' dotted line style

'.' point marker

',' pixel marker

'o' circle marker

'v' triangle_down marker

'^' triangle_up marker

'

'>' triangle_right marker

'1' tri_down marker

'2' tri_up marker

'3' tri_left marker

'4' tri_right marker

's' square marker

'p' pentagon marker

'*' star marker

'h' hexagon1 marker

'H' hexagon2 marker

'+' plus marker

'x' x marker

'D' diamond marker

'd' thin_diamond marker

'|' vline marker

'_' hline marker

==================

character color

‘b’ blue

‘g’ green

‘r’ red

‘c’ cyan

‘m’ magenta

‘y’ yellow

‘k’ black

‘w’ white

此外 还可以用灰色度来控制颜色:比如 color = ‘0.8’。

(3)设置坐标轴参数、标题、图示、文字

plt.xlabel('x轴', fontsize = 'x-large')#设置X轴字体及文字大小

plt.ylabel('y轴', fontsize = 'medium') #设置y轴字体及文字大小

plt.xticks((1,2,3),('A','B','C'), fontsize = 'x-large') #自定义设置x轴刻度字符及大小

plt.yticks((10,22,33),('H','L','K'), fontsize = 'x-large') #自定义设置y轴刻度字符及大小

plt.xlim(0, 10) #设置x轴坐标的区域

plt.ylin(-4, 4) #设置y轴坐标的区域

plt.legend() #显示图示

plt.title('图像的标题') #设置整个图像的标题

plt.grid(True) #是否显示网格

plt.show() #生成并显示整个图像

xticks和yticks: 为x,y轴的主刻度和次刻度设置颜色、大小、方向,以及标签大小。

第一个参数表示自定义刻度显示的位置,为序列

第二个参数表示自定义刻度显示的字符,为序列

fontsize参数有“xx-small, small, medium, x-small, None, x-large, larger, xx-large, smaller, large”

x,y轴的范围还可以通过这样来确定

plt.axis([ximn,xmax,ymin,ymax])

plt.text()用于在图像任何位置添加文字,用支持Latex语法

plt.text(2.1, 3.4, '$y = sin(x^2)$')

其中,前两个参数表示 文字摆放的位置,要添加的文字对象。

(4)、绘制多坐标轴图

plt.subplot(321)

表示共有3*2=6个子区域,三行,两列

从左至右,从上至下,依次编号

321表示三行两列的区域中的第一行第一列的子区域,即编号的第一个

324表示三行两列的区域中的第二行第二列的子区域,即编号的第四个

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值