相似三角形是九年级上册知识点,也是中考必考点之一,学习相似三角形可结合全等三角形进行对比总结、分析,利用相似三角形可求相关角的度数、线段长度及线段间的等量关系等,本试卷是老师整理的历年来中考、期末考相关填空题,可供同学们抓提、复习巩固专用,有兴趣的同学可以收藏、转发分享,你也可以关注@优jia教育,了解最新数学资讯、分享相关数学知识点、学习方法、典型微课题学习等。

第1题过C点作CG⊥AB于点G,把直角梯形ABCD分割成一个直角三角形和一个矩形,由于太阳光线是平行的,就可以构造出相似三角形,根据相似三角形的性质解答即可;
第3题根据矩形的性质可得出AD∥BC,进而可得出∠DAF=∠ECF,结合∠AFD=∠CFE(对顶角相等)可得出△AFD∽△CFE,利用相似三角形的性质可得出CE/AD=CF/AF=3/4,利用勾股定理可求出AC的长度为10,设AF=x,则CF=10-x,代入解方程即可求解;
第6题过点A作AE⊥BD , 由AAS得△AOE≌△COD , 从而得CD=AE=3,由勾股定理得DB=4,易证△ABE∽△BCD;

第8题设AD与BE相交于H,由比例的性质和三角形内角和定理可求得∠1、∠2、∠3的度数;再由翻折的性质可得:∠D=∠ABE=∠2,∠CAD=∠1,由图知∠BAD+∠1+∠CAD=360°,于是∠BAD的度数可求解,在三角形BAH中,用三角形内角和定理可求得∠BHA的度数,由对顶角相等可得∠DHE=∠BHA,在三角形DHG中,用三角形内角和定理可求得∠DGH的度数,则∠α=∠DGH可求解;
第9题过B作AC的平行线,过C作AB的平行线,交于点D,证明四边形ABCD为菱形,得到点A和点D关于BC对称,从而得到PA+PE=PD+PE,推出当P,D,E共线时,PA+PE最小,即DE的长,观察图像可知:当点P与点B重合时,PD+PE=3根号3,分别求出PA+PE的最小值为3,PC的长,即可得到结果;
第11题作DG∥AC,交BE于点G,得到OD=2/3CD,进而得到S△ABO=2/3S△ABC,求出△ABC面积最大值 ,问题得解;
第12题利用平行线分线段成比例得到EF=2,再利用中位线得到DH的长即可;

第13题根据题意易证△ANE和△BNF是等腰直角三角形,利用等腰