python实体关系抽取_实体识别和关系抽取的联合模型

这篇博客介绍了Python中实体关系抽取的联合模型,利用词和字符级别的Embedding,BiLSTM,CRF和Label Embedding进行实体识别和关系抽取。模型还包括对抗训练以增强鲁棒性,并详细描述了数据格式、处理方法和模型训练过程。
摘要由CSDN通过智能技术生成

模型图:项目中model.png

请参照模型图理解代码

1.项目大致流程描述:

word/char Embedding(特征嵌入层):

在词级别的向量基础上加入字符级的信息,这样的embedding可以捕捉前缀后缀这样的形态特征。

先用skip-gram word2vec 模型预训练得到的词向量表将每个词映射为一个词向量,然后把每个词中字母用一个向量表示,把一个词中所包含的字母的向量送入 BiLSTM, 把前后两个最终状态和 词向量进行拼接,得到词的embedding

BiLSTM层:

把句子中所包含词的embedding输入,然后将前向、后向 每个对应位置的hidden state拼接起来得到新的编码序列。

CRF Layer:

采用BIO标注策略,使用CRF引入标签之间的依赖关系,

计算每个词得到不同标签的分数

计算句子的标签序列概率

采用Viterbi算法得到分数最高的序列标签

在进行命名实体时 通过最小化交叉熵损失 来达到 优化网络参数和CRF的目的,测试时用Viterbi算法得到分数最高的序列标签

Label Embedding:

实体标签的embedding。训练时真实标签,测试时为预测标签

Heads Relations:

输入为BiLSTM的hidden state和label Embedding的拼接。可以预测多个头,头和关系的决策是一块完成的,而不是先预测头,再用关系分类器预测关系

标签策略: CRF层的输出是采用BIO标注策略的实体识别结果,head Relations层只有在和其他实体有关系时 会给出对应实体的尾单词和关系;在与其他实体没有关系时 head为原单词

【资源介绍】 基于Python的中文信息实体抽取、关系抽取、事件抽取源码+数据集+训练好的模型+项目说明.zip 数据、预训练模型、训练好的模型下载地址: 链接:https://pan.baidu.com/s/1TdJOF7vjLw4caE1SkZEZGA?pwd=gdpq 提取码:gdpq 每一个代码里面都有训练和验证,并新增了预测功能,只需要修改do_train和do_predict即可。执行代码: ```python python xxx_ner/re/ee.py ``` 依赖 ``` pip install keras==2.2.4 pip install bert4keras==0.10.6 pip install tensorflow-gpu==1.14.0 pip install h5py==2.10.0 ``` 实体抽取 主代码在ner下,数据在data/ner/china-people-daily-ner-corpus/下。ner的结果没有保存,自行预测保存即可。 bert-crf ``` maxlen = 256 句子最大长度 epochs = 10 训练的epoch batch_size = 32 batchsize大小 learning_rate = 2e-5 学习率 crf_lr_multiplier = 1000 必要时扩大CRF层的学习率,crf层的学习率要设置比bert层的大一些 test_f1:0.94876 valid_f1:0.95438 ``` globalpointer ``` maxlen = 256 epochs = 10 batch_size = 32 learning_rate = 2e-5 test_f1: 0.95473 valid_f1: 0.96122 ``` 关系抽取 这里需要安装最新版的bert4keras==0.11.3。这里我只训练了一个epoch,因此将优化器改为了Adam。主代码在re下,数据在data/re/duie/下。 更多详情见项目说明!!!! 【备注】 该项目是个人毕设/课设/大作业项目,代码都经过本地调试测试,功能ok才上传,高分作品,可快速上手运行!欢迎下载使用,可用于小白学习、进阶。 该资源主要针对计算机、通信、人工智能、自动化等相关专业的学生、老师或从业者下载使用,亦可作为期末课程设计、课程大作业、毕业设计等。 项目整体具有较高的学习借鉴价值!基础能力强的可以在此基础上修改调整,以实现不同的功能。 欢迎下载使用,也欢迎交流学习!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>