m*n的矩阵 每次改变一行或者一列 求矩阵的和_记一个范德蒙得矩阵的逆矩阵 ( ̄ε(# ̄)...

题目出自丘维生《高等代数》第4章第5节习题。一个很有意思的求逆矩阵的例子。

求下述n级范德蒙德矩阵A的逆矩阵(n>1),其中

求逆矩阵的方法有很多种,比如可以对
为单位矩阵)进行初等行变换,得到
,但鉴于对范德蒙德矩阵进行初等行变换是一件费力不讨好的事情,所以不建议采用。

另一种方法是求线性方程组

的解,然后将
依次换成
后得到的各自的解向量
,那么
。(这里的
是指第i位为1,其余位为0的n维列向量,邱老的这本书里记号可能和其他的书不太一样)

我试着利用第二种方法做过,比如只要解出

我们是知道的,而且因为
相当于n等分圆,每一个
相当于一个n等分角,自然互不相同,所以
。所以
有唯一解。

根据克莱姆法则,

的解向量
的第j个分量,就是
,其中
是将
中第j列替换成
后得到的行列式。

所以就需要我去求

,它长下面这个样子:

自然而然的想到按照第j列展开,这样就只有一个余子式。

其中

表示行列式
余子式。它长的更加狰狞了:

这式子长得就好像我欠它钱一样,巴不得把我一口吞了,很难再套用一般的范德蒙德行列式来求解。你说不能做,也不是,它确实能做,比如如果你考虑到我在文章:Orion:如何证明下面这个关于组合数的等式?中提到的那种方法,我们是能够处理当

或者
的情况的,因为在这时行(或者列)的指数是连续的。

再考虑到

等分圆的循环性质,我们可以将任意的
余子式通过初等变换变成上面讨论过的情况。只要注意到:

时,将
的第
行(
)乘以因子
,原本的行
就变成了

因为

(这里的
表示虚数单位,不要搞混),所以有

从而第k行变成了:

这样每一行都变成了如上的样子,再通过两列互换将1换到第一列,

换到第2列,以此等等。

当然这显然是一件费力不讨好的事,我自己也没有将这个方法贯彻到底,求出来的余子式太复杂了,化简很麻烦。

所以我改变了策略,尤其是注意到n等分角的循环性质之后。

不废话,我们先考察一下矩阵A的第2列之和,

上式左右两边乘以

,得到

注意到

,所以

同样的,对第3列,第4列,……,第n列做做相同的讨论可得,它们的项之和为0。

这能不能推到普遍的情况呢?如果我们构造一个矩阵

那么

等于什么呢?

考虑

,根据定义,

时,我们有

时,比如不妨设
,那么

从而有

同样的,两边同时乘以

,得到:

因为

,所以:

也是同样的方法,只要注意到
即可。

所以我们知道:

所以A的逆矩阵为

,即:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值