平面直角坐标系中的旋转公式_定比分点公式及定理

摘要:在本文中,我们将探讨一下线段定比分点的性质。

我们来回顾一下定比分点的概念。

ea97c73db480222e51f6ecd037b2f7c5.png

如上图所示,线段AB上有一点P分线段AB的比为

,即

在平面直角坐标系中,已知A、B两点的坐标分为

,P点坐标为
,且
,那么我们就说P分有向线段
的比为
,则有:

,这就是
定比分点坐标公式

当P为内分点时,

;当P为外分点时,
;当P与A重合时,
;当P与B重合时,
不存在。

推导过程在任何的高中课本里都有,我们就不再推导了。

我们设过P点的一条直线方程为

,由于点
在直线上,代入直线方程中便有:

从中可以解出:

这便是另一个定比分点公式,我们称为直线分线段比公式

用这个公式来证明平面几何中的梅涅劳斯定理将会非常简单。

d8598b15357102f23a481faa6a98747e.png

如上图所示,P、R、Q三点共线,我们设三角形三个顶点的坐标分别为:

,直线PQ的方程为
,利用直线分线段比例定理分别对三角形ABC的三边使用,则有:

P分

的比为:

Q分

的比为:

R分

的比为:

所以:

如果不考虑正负号,则结果为1,这就是通常表述上的梅涅劳斯定理。

我们再来看下面的平面几何图形:

a0ef639249bca77f4dca7e5ca4735cdd.png

如上图所示,点T是线段PQ上的一点,

,需要说明的是,线段PQ和线段AB不能相交,则有:

证明:设四边形ABPQ的面积为S,于是:

(利用同高的三角形面积比等于底边的比)

证毕。

我们称之为定比分点面积公式

在定比分点的公式里,需要说明的是,如果我们令

,那么则有
,于是定比分点面积公式可以写成:
,同理可以重写定比分点坐标公式。

最后再说一个结论,

b8aae07a7d3be91c09d9bab43eb6d9bb.png

如上图所示梯形ABCD,

,则有:

当E、F两点是AD、BC的中点时,EF叫做梯形的中位线。类似的结论还有很多,读者可自行挖掘证明。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
直角坐标系中,两个向量的乘(也称为数量积或内积)表示了这两个向量之间的数值关系。乘的结果是一个标量(即一个实数),而不是一个向量。 乘的计算方法是,将两个向量对应位置的分量相乘,然后将这些乘积相加起来。具体来说,设有两个向量 A 和 B,它们在直角坐标系中的分量分别为 A = (A₁, A₂, A₃) 和 B = (B₁, B₂, B₃)。那么 A 和 B 的乘结果为: A · B = A₁ * B₁ + A₂ * B₂ + A₃ * B₃ 乘的含义可以有多个解释和应用: 1. 夹角:乘可以用来计算两个向量之间的夹角 θ。具体而言,根据乘的义和余弦定理,我们可以得到以下关系式: A · B = |A| * |B| * cos(θ) 其中,|A| 和 |B| 分别表示向量 A 和 B 的模(长度)。通过这个关系式,我们可以通过乘的结果来判断两个向量之间的夹角大小和夹角的正负。 2. 正交性:如果两个向量 A 和 B 的乘结果为零(A · B = 0),则说明它们是正交的,即两个向量相互垂直。 3. 投影:乘还可以用来计算一个向量在另一个向量上的投影长度。具体而言,设有向量 A 和 B,那么 A 在 B 上的投影长度为: proj(A, B) = |A| * cos(θ) 其中,θ 是 A 和 B 之间的夹角。可以通过乘的结果来计算投影长度。 这些是乘的一些常见含义和应用,但具体使用方式还取决于具体的问题和上下文。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值