本文将介绍使用Hugging Face和Gradio在5分钟内建立AI聊天机器人,通过这个简单易懂的教程,学习直接在浏览器中使用低代码技术创建Gradio聊天机器人。
微信搜索关注《Python学研大本营》,加入读者群,分享更多精彩
本简短教程将使用Microsoft DialoGPT模型、Hugging Face Space和Gradio接口建立一个简单的聊天机器人。使用类似的技术,你将可以在5分钟内开发和自定义自己的应用程序。
1.创建新空间
-
前往hf.co并创建一个免费账户。然后,点击右上角的显示图像并选择“New Space”选项。
-
在表格中填写应用程序名称、许可证、空间硬件和可见性。
图片来自Space
-
按“Create Space”以初始化该应用程序。
-
用户可以从本地系统克隆存储库并推送文件,也可以使用浏览器在Hugging Face上创建和编辑文件。
图片来自AI ChatBot
2.创建ChatBot应用程序文件
我们将点击“Files”选项卡 > “+ Add file” > “Create a new file”。
图片来自kingabzpro/AI-ChatBot
创建Gradio接口。你可以复制我的代码。
【Gradio】:https://www.gradio.app/
图片来自app.py
现在已经加载了“microsoft/DialoGPT-large
”分词器和模型,并创建了一个predict
函数来获取响应并创建历史记录。
from transformers import AutoModelForCausalLM, AutoTokenizer
import gradio as gr
import torch
title = "🤖AI ChatBot"
description = "A State-of-the-Art Large-scale Pretrained Response generation model (DialoGPT)"
examples = [["How are you?"]]
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-large")
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-large")
def predict(input, history=[]):
# 将新输入的句子进行分词
new_user_input_ids = tokenizer.encode(
input + tokenizer.eos_token, return_tensors="pt"
)
# 将新用户输入的令牌附加到聊天历史记录中
bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1)
# 生成一个响应
history = model.generate(
bot_input_ids, max_length=4000, pad_token_id=tokenizer.eos_token_id
).tolist()
# 将令牌转换为文本,然后将响应拆分为行
response = tokenizer.decode(history[0]).split("<|endoftext|>")
# print('decoded_response-->>'+str(response))
response = [
(response[i], response[i + 1]) for i in range(0, len(response) - 1, 2)
] # 转换为列表的图元
# print('response-->>'+str(response))
return response, history
gr.Interface(
fn=predict,
title=title,
description=description,
examples=examples,
inputs=["text", "state"],
outputs=["chatbot", "state"],
theme="finlaymacklon/boxy_violet",
).launch()
此外,本文还为示例应用程序提供了一个定制的主题:Boxy_violet
。用户可以浏览Gradio主题库,根据自己的口味选择主题。
3.创建需求文件
现在,我们需要创建一个requirement.txt
文件,并添加所需的Python包。
图片来自requirements.txt
transformers
torch
之后,你的应用程序将开始建立,并在几分钟内下载模型并加载模型推理。
4.Gradio演示
Gradio应用程序看起来很棒。我们只需要为每个不同的模型架构创建一个predict
函数来获取响应并维护历史记录。
你现在可以在kingabzpro/AI-ChatBot上与应用程序进行聊天和交互,或者使用https://kingabzpro-ai-chatbot.hf.space将应用程序嵌入到你的网站中。
图片来自kingabzpro/AI-ChatBot
可以在Spaces上寻找数百个聊天机器人应用程序,以获取灵感并了解模型推理。
例如,如果你有一个在“LLaMA-7B”上进行微调的模型,请搜索该模型并向下滚动以查看该模式的各种实现。
图片来自decapoda-research/llama-7b-hf
总结
总之,本文提供了一个快速而简单的教程,介绍如何在短短5分钟内使用Hugging Face和Gradio创建AI聊天机器人。通过一步步的指导说明和可自定义的选项,任何人都可以轻松地创建自己的聊天机器人。
推荐书单
IT BOOK 多得(点击查看5折活动书单)
https://u.jd.com/psx2y1M
《智能聊天机器人:核心技术与算法》
随着人工智能技术的发展,人类对智能化服务更加渴望,聊天机器人成为研发热门之一。
《智能聊天机器人:核心技术与算法》从聊天机器人所涉及的多个方面出发,先理论后实践,让读者不仅能了解其中的原理,还能自己动手编程。
《智能聊天机器人:核心技术与算法》共9章,第1章以该领域的背景知识作为开篇,重点介绍了聊天系统中的主要模块;第2章阐述了语音识别和隐马尔可夫模型;第3章侧重于通用的自然语言处理技术;第4章讲解如何使用信息检索技术,来实现问答型的聊天系统;第5章介绍一些主流的机器学习算法,以及如何使用这些算法来提升基于信息检索的问答系统;第6章介绍推荐系统相关的知识以及常见的推荐算法,并将其应用到问答系统中;第7章介绍如何使用深度学习来优化问答系统;第8章讲述了聊天系统的前沿领域——知识图谱;第9章讨论任务型和闲聊型聊天系统中更有挑战性的几个课题。
《智能聊天机器人:核心技术与算法》可为高等院校计算机科学、信息科学、电子工程和人工智能等领域的科研人员提供参考,也可作为相关专业本科生和研究生教学的参考书,对于从事深度学习及其应用的开发人员同样具有参考价值。
《智能聊天机器人:核心技术与算法》https://item.jd.com/13311032.html
精彩回顾
微信搜索关注《Python学研大本营》,加入读者群
访问【IT今日热榜】,发现每日技术热点