本文介绍的是python中pandas.DataFrame对行与列求和及添加新行与列的相关资料,下面话不多说,来看看详细的介绍吧。
方法如下:
导入模块:
from pandas import DataFrame
import pandas as pd
import numpy as np
生成DataFrame数据
df = DataFrame(np.random.randn(4, 5), columns=['A', 'B', 'C', 'D', 'E'])
DataFrame数据预览:
A B C D E
0 0.673092 0.230338 -0.171681 0.312303 -0.184813
1 -0.504482 -0.344286 -0.050845 -0.811277 -0.298181
2 0.542788 0.207708 0.651379 -0.656214 0.507595
3 -0.249410 0.131549 -2.198480 -0.437407 1.628228
计算各列数据总和并作为新列添加到末尾
df['Col_sum'] = df.apply(lambda x: x.sum(), axis=1)
计算各行数据总和并作为新行添加到末尾
df.loc['Row_sum'] = df.apply(lambda x: x.sum())
最终数据结果:
A B C D E Col_sum
0 0.673092 0.230338 -0.171681 0.312303 -0.184813 0.859238
1 -0.504482 -0.344286 -0.050845 -0.811277 -0.298181 -2.009071
2 0.542788 0.207708 0.651379 -0.656214 0.507595 1.253256
3 -0.249410 0.131549 -2.198480 -0.437407 1.628228 -1.125520
Row_sum 0.461987 0.225310 -1.769627 -1.592595 1.652828 -1.022097
总结
以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作能带来一定的帮助,如果有疑问大家可以留言交流,谢谢大家对软件开发网的支持。
您可能感兴趣的文章:Python pandas自定义函数的使用方法示例Python使用Pandas读写Excel实例解析Python 中pandas索引切片读取数据缺失数据处理问题Python3 pandas 操作列表实例详解在Python中利用Pandas库处理大数据的简单介绍python中pandas.DataFrame的简单操作方法(创建、索引、增添与删除)Python pandas常用函数详解Windows下Python使用Pandas模块操作Excel文件的教程python pandas dataframe 按列或者按行合并的方法Python科学计算之Pandas详解Python 中pandas.read_excel详细介绍Python pandas RFM模型应用实例详解