python dataframe 列求和_python中pandas.DataFrame对行与列求和及添加新行与列示例

本文详细介绍了如何在Python中使用pandas DataFrame进行行与列的求和,以及如何将求和结果作为新列和新行添加到数据框中。通过实例展示了DataFrame的apply函数在计算总和方面的应用。
摘要由CSDN通过智能技术生成

本文介绍的是python中pandas.DataFrame对行与列求和及添加新行与列的相关资料,下面话不多说,来看看详细的介绍吧。

方法如下:

导入模块:

from pandas import DataFrame

import pandas as pd

import numpy as np

生成DataFrame数据

df = DataFrame(np.random.randn(4, 5), columns=['A', 'B', 'C', 'D', 'E'])

DataFrame数据预览:

A B C D E

0 0.673092 0.230338 -0.171681 0.312303 -0.184813

1 -0.504482 -0.344286 -0.050845 -0.811277 -0.298181

2 0.542788 0.207708 0.651379 -0.656214 0.507595

3 -0.249410 0.131549 -2.198480 -0.437407 1.628228

计算各列数据总和并作为新列添加到末尾

df['Col_sum'] = df.apply(lambda x: x.sum(), axis=1)

计算各行数据总和并作为新行添加到末尾

df.loc['Row_sum'] = df.apply(lambda x: x.sum())

最终数据结果:

A B C D E Col_sum

0 0.673092 0.230338 -0.171681 0.312303 -0.184813 0.859238

1 -0.504482 -0.344286 -0.050845 -0.811277 -0.298181 -2.009071

2 0.542788 0.207708 0.651379 -0.656214 0.507595 1.253256

3 -0.249410 0.131549 -2.198480 -0.437407 1.628228 -1.125520

Row_sum 0.461987 0.225310 -1.769627 -1.592595 1.652828 -1.022097

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作能带来一定的帮助,如果有疑问大家可以留言交流,谢谢大家对软件开发网的支持。

您可能感兴趣的文章:Python pandas自定义函数的使用方法示例Python使用Pandas读写Excel实例解析Python 中pandas索引切片读取数据缺失数据处理问题Python3 pandas 操作列表实例详解在Python中利用Pandas库处理大数据的简单介绍python中pandas.DataFrame的简单操作方法(创建、索引、增添与删除)Python pandas常用函数详解Windows下Python使用Pandas模块操作Excel文件的教程python pandas dataframe 按列或者按行合并的方法Python科学计算之Pandas详解Python 中pandas.read_excel详细介绍Python pandas RFM模型应用实例详解

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值