python ar_滚动时间序列AR(1)回归估计在Python数据帧和MovingOLS?

这里有两个问题:

首先。我有这样一个数据帧:Date Y X1 X2 X3

22 2004-05-12 9.348158e-09 0.000081 0.000028 0.000036

23 2004-05-13 9.285989e-09 0.000073 0.000081 0.000097

24 2004-05-14 9.732308e-09 0.000085 0.000073 0.000096

25 2004-05-17 2.235977e-08 0.000089 0.000085 0.000099

26 2004-05-18 2.792661e-09 0.000034 0.000089 0.000150

27 2004-05-19 9.745323e-09 0.000048

1000 2004-05-20 1.835462e-09 0.000034 0.000048 0.000099

1001 2004-05-21 3.529089e-09 0.000037 0.000034 0.000043

1002 2004-05-24 3.453047e-09 0.000043 0.000037 0.000059

1003 2004-05-25 2.963131e-09 0.000038 0.000043 0.000059

1004 2004-05-26 1.390032e-09 0.000029 0.000038 0.000054

我想运行一个滚动的100天窗口OLS回归估计,这是:

首先,对于第101行,我使用第1行到第100行运行Y的AR(1)回归,并估计第101行的Y

然后对于第102行,我使用第2行到第101行对Y进行AR(1)回归,并估计第102行的Y

然后对于第103行,我使用第2行到第101行对Y进行AR(1)回归,并估计第103行的Y

。。。。。。在

直到最后一排。在

我现在使用以下代码进行AR(1)回归:

^{pr2}$

当然,使用任何可能的方法来实现目标是免费的。怎么做

第二。当我使用MovingOLS时,输出如下:-------------------------Summary of Regression Analysis-------------------------

Formula: Y ~ + + +

+

Number of Observations: 1420

Number of Degrees of Freedom: 5

R-squared: 0.3370

Adj R-squared: 0.3352

Rmse: 0.0001

F-stat (4, 1415): 179.8353, p-value: 0.0000

Degrees of Freedom: model 4, resid 1415

-----------------------Summary of Estimated Coefficients------------------------

Variable Coef Std Err t-stat p-value CI 2.5% CI 97.5%

--------------------------------------------------------------------------------

RV(t-1) 0.5031 0.0496 10.14 0.0000 0.4058 0.6003

RV(t-1)*RQ(t-1)^0.5 -55.2344 10.1137 -5.46 0.0000 -75.0573 -35.4115

RV(t-1|t-5) 0.1736 0.0542 3.20 0.0014 0.0673 0.2799

RV(t-1|t-22) 0.2381 0.0563 4.23 0.0000 0.1276 0.3485

intercept 0.0000 0.0000 2.22 0.0268 0.0000 0.0000

---------------------------------End of Summary---------------------------------

它如何将许多回归结果整合到这样一个摘要中

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值