R 多变量数据预处理_R语言常用统计方法包+机器学习包(名称、简介)

本文介绍了R语言中常用的统计分析与机器学习包,重点讲解了survival包,包括Surv函数、survfit、survdiff、coxph、cox.zph和survreg等核心功能,以及它们在生存分析中的应用。虽然survival包的图形不那么美观,但其功能强大,是进行生存分析的重要工具。
摘要由CSDN通过智能技术生成

上期帮大家盘点了一下R中常用的可视化包,这期将简要盘点一下关于统计分析与机器学习的R包,并通过简要介绍包的特点来帮助读者深入理解可视化包。

本文作者为“食物链顶端”学习群中的小伙伴,感谢他们的分享。

话不多说我们一起来看看吧!

1. survival

简介:survival是目前用的最多的做生存分析的包,Surv:用于创建生存数据对象,survfit:创建KM生存曲线或是Cox调整生存曲线,survdiff:用于不同组的统计检验,coxph:构建COX回归模型,cox.zph:检验PH假设是否成立,survreg:构建参数模型,包括Km和cox分析。

缺点:图形不够美观。

2. glmnet 简介: glmnet是做lasso分析的R包,包括二分类logistic回归模型,多分类logistic回归模型,Possion模型,Cox比例风险模型,svm模型,是目前用的最多的lasso分析的包,简单易用,通过选择1se lambda为最优参数,广泛应用在筛选基因的研究中。 缺点:优化下速度。   3. randomForests 简介: randomForest 包提供了利用随 机森林算法解决分类和回归问题的功能。 使用起来比较简单,其中randomForest()函数用于构建随机森林模型,importance()函数用于计算模型变量的重要性,MDSplot()函数用于实现随机森林的 可视化,rfImpute()函数可为存在缺失值的数据集进行插补(随机森林法),得到最优的样本拟合值,treesize()函数用于计算随机森林中每棵树的节点个数。 缺点:据我所知这是用R做随机森林最常用(可能是唯一)的R包,比用python容易上手,硬要说缺点的话就是图形美观度,但可以后期AI调整。   4.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值