从今天开始,陆续更新ucinet社会网络分析的内容。ucinet软件是由加州大学欧文(Irvine)分校的一群网络分析者编写的。
ucinet能够处理的原始数据最主要的就是矩阵格式,该程序本身不包含网络可视化的图形程序,但可将数据和处理结果输出至NetDraw、Pajek、Mage和KrackPlot等软件作图。UCINET包含大量包括探测凝聚子群(cliques, clans, plexes)和区域(components, cores)、中心性分析(centrality)、个人网络分析和结构洞分析在内的网络分析。UCINET还包含为数众多的基于过程的分析程序,如聚类分析、多维标度、二模标度(奇异值分解、因子分析和对应分析)、角色和地位分析(结构、角色和正则对等性)和拟合中心-边缘模型。
那么你可以从系列课程中达到什么呢?
1.原始数据下载 原始数据下载包含知网数据与wos数据的下载(检索策略),以及pubmed数据的下载。
2.矩阵的制作 包含上述数据矩阵的制作以及微博、政策、访谈等任意文本的共词矩阵制作。
3.数据导入 数据的处理及导入生成ucinet文件
4. 网络中心性分析(点度中心性,接近中心性,中介中心性)数据的制作以及相应的知识图谱的制作 网络密度 聚类系数
5.凝聚子群分析 n-丛 k-丛 k-核 n-派 n-宗分析
6.小世界分析
7.块模型分析
8.结构洞分析
9.二模网络分析 矩阵的制作 二模数据的导入及分析
10.假设检验 T检验 方差分析 回归分析
11.QAP分析 QAP相关 QAP回归分析
该课程细节满满,对于要学习社会网络、知识图谱的同学来说是不可多得的好资料,不仅教学软件的使用还有社会网络相关知识的讲解。现如今发核心论文知识图谱可以说是标配了,论文的写作是一方面,精美图表的制作也是很受编辑重视的一点,这个系列课程将ucinet的所有知识涵盖其中,包含作者的使用心得,让你最快时间内学会这个软件,具体的课程连接请见下方的阅读原文链接,欢迎大家学习交流,我会陪着大家一起进步~