二维随机变量期望公式_【统计学进阶知识(一)】深入理解Beta分布:从定义到公式推导...

a4d1fe9906c04e9a20a1c42a1abaf4e9.png

读者知识背景:微积分,概率统计


目录

(1) Beta分布及其函数公式推导
(2) Beta 函数和 Gamma 函数的关系
(3) Beta 分布的期望与方差
(4) Beta分布与二项分布的关系
(5) Beta分布与均匀分布的关系

Beta分布是一种连续型概率密度分布,表示为

,由两个参数
决定,称为形状参数

由于其定义域为(0,1),一般被用于建模伯努利试验事件成功的概率的概率分布:

对于硬币或者骰子这样的简单实验,我们事先能很准确地掌握系统成功的概率
然而通常情况下,系统成功的概率是未知的,但是根据频率学派的观点,我们可以通过频率来估计概率
为了测试系统的成功概率,我们做n次试验,统计成功的次数k,于是很直观地就可以计算出。然而由于系统成功的概率是未知的,这个公式计算出的只是系统成功概率的最佳估计。也就是说实际上也可能为其它的值,只是为其它的值的概率较小。因此我们并不能完全确定硬币出现正面的概率就是该值,所以也是一个随机变量,它符合Beta分布,其取值范围为0到1

用一句话来说,beta分布可以看作一个概率的概率密度分布,当你不知道一个东西的具体概率是多少时,它可以给出了所有概率出现的可能性大小

1. Beta分布及其函数公式推导

如果随机变量

服从参数为
的二项分布,那么它的概率由概率质量函数(对于连续随机变量,则为概率密度函数)为:

表示为变量
的函数,即只有
这一个变量,写成如下形式

其中

是常量,

为了把

变成一个分布,可以给它乘上一个因子,使它对
从0到1积分为1即可,即

令其积分为1

,则
,所以

那么规范化后的 (2) 就是一个分布了

这就是Beta分布的最原始的来源

对(5)进行适当的改造:取

,并将积分
中的
改为
,我们就得到了我们在教材上看到的Beta函数了:

另外,将(5)中的q改为x,则我们就得到了我们在教材上看到的Beta分布的函数:

到这里我们已经完整地推出了Beta函数(公式(6))和Beta分布(公式(7))

2. Beta 函数和 Gamma 函数的关系

先做一下前期的推导:

6495fe15aba75f12952449900eaee37e.png

假设向长度为1的桌子上扔一个红球(如上图),它会落在0到1这个范围内,设这个长度值为

,再向桌上扔一个白球,那么这个白球落在红球左边的概率即为
。 若一共扔了
次白球,其中每一次都是相互独立的,假设落在红球左边的白球数量为
,那么随机变量
服从参数为
的二项分布,即
,有

服从
上的均匀分布,即

对每一个
都有上面的分布,对于所有可能的
的分布为

现在,我们换一种方式来丢球:

先将这
个球都丢出来,再选择一个球作为红球,任何一个球被选中的概率均为
,此时红球左边有
个球的概率均为
,有

再来看看

函数的定义:

(4)在定义域为整数时,即

时,才满足等于

那么,现在我们就可以推导出

函数与Beta函数的关系了:

由于

根据(3),可令

,则

又由于(4),可得

因此,Beta分布也可以写成下面的形式:

3. Beta 分布的期望与方差

  • Beta 分布的期望

  • Beta 分布的方差

由于

那么,先求

接着求

  • Beta分布的概率分布函数

由于Beta分布是概率密度分布,我们可以通过积分,得到它的概率分布函数


定义
,称为不完全Beta函数(incomplete Beta function)则

4. Beta分布与二项分布的关系

进行n次伯努利试验,其出现试验成功的概率p服从一个先验概率密度分布
,试验结果出现k次试验成功,则试验成功的概率p的后验概率密度分布为

证明:

假设试验场景为棒球击球试验

该运动员击球时间的概率图模型如下图:

cbe35db7963432925ea86b805c2168cf.png

假设该用户的击球率的分布是一个参数为

的分布(这里
既表示一个分布,也是这个分布的参数。因为在概率图模型中,我们经常使用某个分布的参数来代替说明某个模型),也就是说
是用户击球成功的概率

假设,到目前为止,用户在这个赛季总共打了

次球,击中的次数是
,结果记为
这是一个二项式分布,即 (
表示:总共打了
次球,击中的次数是
这个事件)
是离散随机变量,则
服从的是概率质量函数(probability mass function)
是连续随机变量,则
服从的是概率密度函数(probability density function)

的联合概率密度函数为

其中,

无关

其实就是形状参数为
的Beta分布

现在,我们需要求出

在给定
情况下的后验分布

由于

,而其中的
就是上面我们推导出的
的联合概率密度分布,
的边际概率密度分布(marginal probability density function)

因此

5. Beta分布与均匀分布的关系

的时候,它就是一个均匀分布


参考资料:

(1) 潇水汀寒《认识Beta函数》

(2) StatLect《Beta distribution》

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值