基于MATLAB的B样条插值拟合算法与分段多项式(附完整代码)

一. B样条函数

B样条函数的MATLAB代码如下:

S=spapi(k,x,y)
%k为用户选定的B样条阶次,一般以4和5居多

例题1

分别用B样条函数对y和f(x)中的自选数据进行5次B样条函数拟合,并与三次分段多项式样条函数拟合的结果相比较。

y=sin(t),\quad f(x)=(x^2-3x+5)e^{-5x}sinx

解:

MATLAB代码如下:

clc;clear;

%%y函数部分
x0=[0,0.4,1,2,pi];
y0=sin(x0);
ezplot('sin(t)',[0,pi]);
hold on

%三次分段多项式样条插值
sp1=csapi(x0,y0);
fnplt(sp1,'--');

%5次B样条插值
sp2=spapi(5,x0,y0);
fnplt(sp2,':')

%%f(x)函数部分
x=0:.12:1;
y=(x.^2-3*x+5).*exp(-5*x).*sin(x);
figure;
ezplot('(x.^2-3*x+5).*exp(-5*x).*sin(x)',[0,1]),
hold on
sp1=csapi(x,y);
fnplt(sp1,'--');
sp2=spapi(5,x,y);
fnplt(sp2,':')

运行结果:

二. 基于样条插值的数值微分

在MATLAB中,可以利用以下函数来求S的k阶导数:

Sd=fnder(S,k)

 如果是求多变量函数的偏导数,则格式如下:

Sd=fnder(S,[k1,...,kn])

例题2

任取函数f(x)的一些数据点,分别用三次分段多项式样条函数与B样条插值函数进行拟合,求出该函数的导数,并与理论推导结果进行比较。

f(x)=(x^2-3x+5)e^{-5x}sinx

解:

MATLAB代码如下:

clc;clear;

syms x;
f=(x^2-3*x+5)*exp(-5*x)*sin(x);
ezplot(diff(f),[0,1]) %理论结果
hold on,
x=0:.12:1;
y=(x.^2-3*x+5).*exp(-5*x).*sin(x);
sp1=csapi(x,y); %建立三次样条函数
dsp1=fnder(sp1,1);
fnplt(dsp1,'--'); %绘制样条图
hold on,

sp2=spapi(5,x,y); %5阶次B样条插值
dsp2=fnder(sp2,1);
fnplt(dsp2,':');
axis([0,1,-0.8,5])

运行结果:

例题3

自行选择z=f(x,y)中的数据,来拟合\frac{\partial^2z}{\partial x\partial y}的曲面,并与解析解法绘制出的曲面相比较。

z=f(x,y)=(x^2-2x)e^{-x^2-y^2-xy}

解:

MATLAB代码如下:

clc;clear;

%拟合曲面
x0=-3:.3:3;
y0=-2:.2:2;
[x,y]=ndgrid(x0,y0);
z=(x.^2-2*x).*exp(-x.^2-y.^2-x.*y);
sp=spapi({5,5},{x0,y0},z); %B样条
dspxy=fnder(sp,[1,1]);
fnplt(dspxy) %生成样条图

%理论方法
syms X Y;
Z=(X^2-2*X)*exp(-X^2-Y^2-X*Y);
figure;
ezsurf(diff(diff(Z,X),Y),[-3 3],[-2 2])
%对符号变量表达式做三维表面图

运行结果:

三. 基于样条插值的数值积分

S作为样条函数,对其进行数值积分格式如下:

f=fnint(S)

 例题4

考虑以下积分中较稀疏的样本点,用样条积分的方式求出定积分及积分函数。

\int_0^\pi sinxdx

解:

MATLAB函数如下:


clc;clear;

x=[0,0.4,1,2,pi];
y=sin(x);

%建立三次样条函数并积分
sp1=csapi(x,y);
a=fnint(sp1,1);
xx1=fnval(a,[0,pi]);
integral1=xx1(2)-xx1(1)

%建立B样条函数并积分
sp2=spapi(5,x,y);
b=fnint(sp2,1);
xx2=fnval(b,[0,pi]);
integral2=xx2(2)-xx2(1)

%绘制曲线
ezplot('-cos(t)+2',[0,pi]); %不定积分可以上下平移
hold on,
fnplt(a,'--');
fnplt(b,':');

运行结果:

四.分段多项式

根据间断数和系数生成分段多项式pp,每个系数的值都是长度为d的向量。MATLAB格式如下:

pp=mkpp(breaks,coefs,d)

可以使用ppval来计算特定点处的分段多项式,也可以使用unmkpp来提取有关分段多项式的详细信息。

例题5

创建任意一个分段多项式,使得它在区间[0,4]内具有三次多项式,在区间[4,10]内具有二次多项式,在区间[10,15]内具有四次多项式。

解:

MATLAB代码如下:

clc;clear;

breaks=[0 4 10 15];
coefs=[0 1 -1 1 1;0 0 1 -2 53;-1 6 1 4 77]; %一共有三段
pp=mkpp(breaks,coefs)

%画图
xq=0:0.01:15;
plot(xq,ppval(pp,xq))
line([4 4],ylim,'LineStyle','--','Color','k')
line([10 10],ylim,'LineStyle','--','Color','k')

运行结果:

例题6

创建一个具有四个区间的单个分段多项式,这些区间在两个二次多项式之间交替。

解:

MATLAB代码如下:

clc;clear;

%显示一个二次多项式在[-8,-4]区间上的结果
subplot(2,2,1)
cc=[-1/4 1 0];
pp1=mkpp([-8 -4],cc);
xx1=-8:0.1:-4;
plot(xx1,ppval(pp1,xx1),'k-')

%在[-4,0]区间上的求反
subplot(2,2,2)
pp2=mkpp([-4 0],-cc);
xx2=-4:0.1:0;
plot(xx2,ppval(pp2,xx2),'k-')

%将二次多项式扩展到四个区间形成的分段多项式
%显示一阶导数,该导数利用unmkpp分解分段多项式构造而成
subplot(2,1,2)
pp=mkpp([-8 -4 0 4 8],[cc;-cc;cc;-cc]);
xx=-8:0.1:8;
plot(xx,ppval(pp,xx),'k-')
[breaks,coefs,k,d]=unmkpp(pp);
dpp=mkpp(breaks,repmat(k-1:-1:1,d*1,1).*coefs(:,1:k-1),d);

 运行结果:

MATLAB中可以使用分段多项式进行拟合分段多项式拟合是将整个数据集分成多个区间,每个区间内使用一个多项式进行拟合。这样可以更好地适应数据的变化。下面是一个MATLAB代码示例,展示了如何使用分段多项式进行拟合: ```matlab clc; clear; % 准备数据 x = \[0, 0.4, 1, 2, pi\]; y = sin(x); % 建立分段多项式拟合 pp = csape(x, y, 'variational'); xx = linspace(0, pi, 100); yy = ppval(pp, xx); % 绘制拟合曲线 plot(x, y, 'o'); hold on; plot(xx, yy); xlabel('x'); ylabel('y'); title('Piecewise Polynomial Fitting'); legend('Data', 'Fitting Curve'); ``` 在这个示例中,我们使用了`csape`函数来建立分段多项式,并使用`ppval`函数来计算拟合曲线上的点。你可以根据自己的数据和需求进行调整和修改。希望对你有帮助!\[1\] #### 引用[.reference_title] - *1* [MATLAB多项式拟合](https://blog.csdn.net/ruredfive/article/details/122997102)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [基于MATLABB样条插值拟合算法分段多项式完整代码)](https://blog.csdn.net/forest_LL/article/details/124417373)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

唠嗑!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值