python规则网格插值_Python中规则网格上的插值

本文探讨了在Python中处理缺失数据的两种插值方法:径向基函数(RBF)插值和高斯过程回归(Kriging)。通过Scipy的Rbf实现对散乱数据进行平滑/插值,并使用scikit-learn的GaussianProcess进行高斯过程回归。两种方法在处理缺失数据时都需要考虑参数选择,且提供了不同的插值效果。
摘要由CSDN通过智能技术生成

什么是合理的解决方案很大程度上取决于你试图用插值像素回答的问题——请注意清空器:对丢失的数据进行外推会导致非常误导的答案!

径向基函数插值/核平滑

就Python中可用的实际解决方案而言,填充这些像素的一种方法是使用Scipy的径向基函数插值实现(参见here),其目的是对散乱数据进行平滑/插值。

考虑到矩阵M和底层的一维坐标数组r和c(这样M.shape == (r.size, c.size)),其中M的缺失项被设置为nan,这对于线性RBF内核来说工作得相当好,如下所示:import numpy as np

import scipy.interpolate as interpolate

with open('measurement.txt') as fh:

M = np.vstack(map(float, r.split(' ')) for r in fh.read().splitlines())

r = np.linspace(0, 1, M.shape[0])

c = np.linspace(0, 1, M.shape[1])

rr, cc = np.meshgrid(r, c)

vals = ~np.isnan(M)

f = interpolate.Rbf(rr[vals], cc[vals], M[vals], function='linear')

interpolated = f(rr, cc)

这将生成您链接到上面的数据的以下插值,尽管看起来很合理,但它确实强调了丢失样本与实际数据的比率有多不利:

高斯过程回归/Kriging

克里格插值可以通过scikit学习库中的Gaussian Process Regression实现(它本身基于用于Matlab的DACE克里格工具箱)获得。可按如下方式调用:from sklearn.gaussian_process import GaussianProcess

gp = GaussianProcess(theta0=0.1, thetaL=.001, thetaU=1., nugget=0.01)

gp.fit(X=np.column_stack([rr[vals],cc[vals]]), y=M[vals])

rr_cc_as_cols = np.column_stack([rr.flatten(), cc.flatten()])

interpolated = gp.predict(rr_cc_as_cols).reshape(M.shape)

这产生了一个非常类似的插值径向基函数的例子以上。在这两种情况下,都有很多参数需要探索——这些参数的选择很大程度上取决于您可以对数据进行的假设。(上述RBF例子中使用的线性核的一个优点是它没有自由参数)

修补

最后,一个完全visually motivated的解决方案是使用OpenCV的inpainting功能,尽管这假设了8位数组(0-255),并且没有直接的数学解释。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值