π是无理数证明定积分_证明圆周率是无理数很容易?人类花了2000年!

ba5736bf27f34fbfc71d959b02ec8882.gif

  我在之前制作的视频中,多次谈到了圆周率π。比如,我介绍过阿基米德和刘徽计算圆周率的方法——割圆术,还谈到了蒲丰利用一根针计算圆周率的方法——蒲丰投针实验。人类使用和计算圆周率已经有了数千年的历史,可是了解圆周率的数学性质其实是最近二三百年的事情。最初人们总是希望能够计算出圆周率的准确值,写成一个分数或者有限小数的形式,可是数千年来的一次次的努力都失败了。

直到两百多年前,数学家们才证明了圆周率是一个无理数(无限不循环小数),是不可能用有限小数或者分数写出来的。可是,你知道这个命题如何证明吗?这回我们就来讨论一下。

44f88392938ff595793e77c247bebf59.png

一.有理数和无理数

我们首先来复习一下基础概念:什么是无理数? 初中时候我们学习过数轴,数轴上面密密麻麻布满了点,有的点是整数,有的点不是整数,但是每一个点就对应了一个数,这个数叫做实数。实数与数轴上的点一一对应。

79ff36e2edfee7033fb5077c75575917.png

数轴

我们可以把实数分成两类:有理数和无理数。 有理数是那些可以写成两个整数的比的数 ,例如: 1,2,1/3,0.25(=1/4),0.929292…(=92/99)......    这些数字要么本身是整数,要么等于两个整数的比,所以都是有理数。 有时候,我们又把有理数分为三种,分别是整数、有限小数和循环小数。有理数有无穷多个,但是我们其实可以把有理数一个一个排列起来,所以有理数的个数其实是与自然数一样多的,这一点我在精读《从一到无穷大》的专栏中说到过证明。 数轴上除了有理数外,其余的数字叫做无理数—— 无理数不能写成两个整数的比,它们是无限不循环小数 。例如
  •    圆周率π=3.1415926……

  •    自然对数的底e=2.71828……

  •    2的平方根√2=1.414……

   …

无理数有无穷多个,而且无理数没有办法一个一个排列起来,它的个数比有理数多得多。

c63b3a2c0a7a243db962759ecb5defa1.png

实数的分类

现在我们已经复习完了有理数和无理数的概念。要证明一个数字是有理数很简单:只要把这个数字表示成两个整数的比就行了。但是要证明一个数字是无理数,就要证明它不能表示成两个整数的比,数学上如何去证明一件事情不可能呢?这就需要用到一种数学方法——反证法了。

二. 反证法

反证法的原理是:我们要证明一件事不可能,就首先假设这件事可能,然后推导出矛盾的结果,于是就证明了它不可能。例如:我们可以通过反证法证明√2是一个无理数。

求证:√2是一个无理数

107181f673fc86102e53a3396fc37d08.png

首先假设√2是有理数,然后推导出矛盾的结果,从而证明√2是无理数。我们利用这种方法,就能证明圆周率是无理数了。

三.第一个证明

200多年前,瑞士著名数学家欧拉研究了关于连分数的问题。

b6a277ed5fd794d7208a487ccb03a30c.png

欧拉

所谓连分数是指形如下面的数字:

f1fbe72a3171041ecadf37126d3692e5.png

其中ai都是整数。数学家们证明:任何一个实数都可以唯一对应一个(特定规则的)连分数,并且有理数对应的连分数是有限层数,而无理数对应的连分数有无限层。例如,无理数√2可以表示成如下形式:

4117bfbe26bde44e85a04b78d3db5ffc.png

在欧拉的启发下,欧拉的同事,瑞士数学家兰伯特想到:能够顺着连分数的思路,证明圆周率是无理数呢?1761年,兰伯特给出了这个证明。

3994b154ebfb1da702521e3e9ceba2da.png

兰伯特 1728-1777

  • 首先,兰伯特证明了:正切函数可以展开成一种类似于连分数的函数形式:

6332d0421f7dbcfe816791c4a4e3f5cf.png

  • 然后,兰伯特根据以上表达式证明:如果x是一个有理数,则tan(x)一定是无理数。

  • 最后,利用反证法:设π是有理数,则π/4也是有理数,于是按照上面的证明,tan(π/4)应该是无理数。但是tan(π/4)=1是一个有理数,发生矛盾。因此π是无理数,证明完毕。

看起来,兰伯特的方法似乎没有多么繁琐,可是如何证明tan(x)可以写成这样的展开式?又如何通过这个展开式证明x是有理数时tan(x)一定是无理数呢?这个过程过于冗长,在这里就不再赘述。

从兰伯特给出了圆周率的是无理数的第一个证明后,数学家们陆续提出了一些其他的证明方式。其中,二十世纪的美国数学家伊万.尼云给出的方法最为简洁,他写的论文总共不到一页纸。小伙伴们保持关注,下一回再给大家介绍伊万的证明方法。

dd154c085c99ea552804a42a2ee04b93.png

1、如何看待高校相对封闭管理政策?

2、时间旅行和祖父悖论

3、时间机器存在吗?

4、普通人如何逃脱消化道肿瘤魔爪?

5、爱因斯坦如何证明勾股定理?

6、台风巴威来了!台风是如何形成的?

7、你会推导质能方程吗?

31996d9ee57fe83f2233d9c4b75defa3.png

b6eb6babed1ffa0867c8a6f6309dbc0e.png

美提课堂

美提课堂www.mtketang.com.cn致力于打造中学理科(数学、物理、化学、生物)精品课程,致力于让优秀的课程服务更多的学生,所有老师均毕业于北大、清华、北师大等著名学府,并拥有国内一流中学十年以上教学经验。目前,网校已经累计开设直播课、专题课、公开课、讲座等数千小时。只需一次点击,让你和名师0距离。了解更多资讯和视听课程快戳这个链接:美提课堂暑假秋季直播课就要开始啦!

c777b075e078988fcd2f4f00e88e5a71.png

客服小姐姐微信: mtketang0007

客服电话:400 155 2135

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值