jmeter的html报告扩展,Jmeter使用笔记之html报告扩展(一)

本文围绕Jmeter的HTML报告扩展展开,介绍了90%Line、QPS、吞吐量、TPS等指标的扩展方法,给出计算公式与关键代码。还指出Jmeter聚合结果中‘总体’一行在某些情况计算不准确,通过分样式表处理解决。最后对扩展指标进行测试,提及扩展中的难点。

这里主要是获得时间元素的集合,以及90%line的位置,有了这两个参数后就可以进行后续的扩展了,扩展后的效果图如下:

4efd9bdf0b8908b703581cd061d6d7bc.png

因为90%Line和95%Line,99%Line计算原理都是一致的,因此只要计算出一个值其他的值也很好计算

QPS扩展

Jmeter的具合报告有Throughput这个值,这个在loadrunner中是表示为吞吐量的,这里可以表示QPS或者TPS(在使用了事务的情况下),个人把这个称为QPS,因为更直观。

和%90Line同样的道理,首先必须知道这个值是怎么计算出来,经过查找资料和官网的比较,发现这个值是通过如下的公式计算出来的:

官网的截图:

1cf293e4e4b7e3740a22db603dc2237a.png

Throughput = (number of requests) / (total time)

total time = 测试结束时间 - 测试开始时间

测试结束时间 = MAX(请求开始时间 + Elapsed Time)

测试开始时间 = MIN(请求开始时间)

知道了公式,那么计算就容易了,以下是关键代码:

扩展后的结果如下:

40ed93d40f791254b5cb722c41dde641.png

吞吐量扩展

在loadrunner中吞吐量就是Throughput,在Jmeter的聚合报告中最后一列的值就是loadrunner中的Throughput,为了便于区分,我把这里的值称为Throughput,

也就是吞吐量。

经过查找资料发现吞吐量的计算和QPS的计算公式是一样的,因为也就是如下的公式:

Throughput = (请求的总字节数) / (total time)

这里的total time计算和QPS是一样的,而总字节数直接把所有请求的加起来即可,关键代码如下:

因为这里显示的字节,最后的结果我打算以KB的单位显示,因此这里需要除以1024,扩展后的结果如下

6f329d9275c3aabe34992aeec001c306.png

TPS扩展

TPS在Jmeter中虽然某些情况和QPS是一致的,但是还是有不一致的地方,因此这里也需要扩展,这样的结果看着更清晰明了。

首先和其他的参数扩展一样,需要知道计算公式,这里的计算公式和QPS也是一样的,只是数据的集合不一样,以下是扩展后的效果。

feab551bd26f25d6db5304515e72c52e.png

在扩展的过程中进一步发现Jmeter的聚合结果中最后的”总体“一行在某些情况下计算的数值是不准确的。如果脚本中不包含事务,那么这里的结果是准确的,如果都包含事务并且把

Generate parent sample选中后这里的结果也是准确的,在脚本中有事务并且没有选中Generate parent sample,或者有些有事务有些没有时,这时的结果就不准确了,因为查看计算

方式发现它把所有的请求都算进去了。

比如,一个jtl文件中即包含HTTP请求也包含事务,因为事务只是对之前请求的一个统计,本身是不发送请求的,所以计算总的吞吐量、QPS,TPS时是不能这么算的。

所以在扩展的过程中分成了两个样式表,一个样式表处理包含事务,或者没有事务的情况,这时的结果以QPS衡量;一个样式表处理全都是事务的情况,这时候的结果以TPS衡量,这样

就准确了。

测试

扩展了好几个指标,这些指标的正确性如何呢?需要在多种情况下进行测试,经过测试后各个指标都是正确的。但是还没有在大的数据量级别下测试,如果测试后发现哪里会有问题,会及时

更改。

切记:由于样式表中是按照lb进行请求区分的,因此这里的lable不能重复,本身也不应该重复,包括Jmeter的聚合报告都是以lable进行区分的

PS:在扩展过程中的难点一是公式如何计算的,二是xls这个 指扩展样式表语言不是很熟悉,本身也有很多限制,会在下个博客中说明。但是用过后感觉还是很不错的既熟悉了xpath还熟悉了xls。

三是需要对Jmeter的测试结果文件每个字段戴表什么意思熟悉,这样才能定制更多的指标,这个也会在单独的博客中说明

【HW3000的收发程序】是个与硬件设备HW3000相关的软件实现,主要用于处理数据的发送和接收。在这个项目中,我们关注的是个基于STM8S105微控制器的示例代码,它使用了IAR集成开发环境。这个压缩包包含了名为"A版本"的代码示例,这表明可能还有其他版本存在,例如"B版本"或"C版本",每个版本可能对应不同的功能改进或优化。 STM8S105是意法半导体(STMicroelectronics)推出的款8位微控制器,属于STM8系列。该芯片具有高性能、低功耗的特点,常用于各种嵌入式系统,如工业控制、消费电子和汽车电子等领域。IAR是个流行的嵌入式系统开发工具,提供了整套集成开发环境(IDE),包括编译器、调试器和其他辅助工具,使得开发者能够方便地编写、编译和调试STM8S105上的代码。 在HW3000的收发程序中,我们预计会看到以下关键知识点: 1. **硬件接口**:为了与HW3000通信,代码可能定义了特定的GPIO引脚来控制数据传输和握手信号。这些引脚可能是通过STM8S105的端口和引脚配置来实现的。 2. **通信协议**:HW3000可能使用某种串行通信协议,如SPI、I2C或UART。代码会包含相应的初始化函数和数据传输函数,以遵循该协议。 3. **中断服务例程**:为了实时响应数据收发事件,程序可能使用中断服务例程(ISR)。当硬件检测到新的数据或发送完成时,中断将被触发,并执行相应处理。 4. **数据缓冲区管理**:在发送和接收数据时,可能需要使用缓冲区来存储待发送的数据或接收的数据包。代码会包含关于如何填充、读取和清空缓冲区的逻辑。 5. **错误检测和处理**:良好的通信程序会包含错误检测机制,如CRC校验或奇偶校验,以及错误处理代码,以确保数据的完整性和正确性。 6. **同步机制**:为了确保发送和接收的顺序,可能使用了互斥锁、信号量或其他同步原语来避免数据冲突。 7. **代码注释**:描述中提到代码注释详细且通俗易懂,这意味着开发者可以很容易地理解每部分的功能,这对于理解和维护代码至关重要。 由于这是个"A版本"的代码,我们可以假设它可能是项目的基础版本,可能随着项目的进展,后续的版本会包含更高级的功能、优化的性能或者修复的已知问题。对这个压缩包的深入研究将有助于我们了解HW3000硬件的工作原理,以及如何有效地与之进行软件交互。
【源码免费下载链接】:https://renmaiwang.cn/s/fmfod 在 Cisco 交换机上管理 VLAN 是网络管理员日常工作中不可或缺的部分。VLAN(虚拟局域网)的创建和删除有助于组织网络流量、提高安全性并优化网络性能。然而,在某些情况下,需要删除不再使用的 VLAN,以避免资源浪费和潜在的配置冲突。在 Cisco 交换机中,简单地执行`no vlan`命令并不能彻底删除个 VLAN,因为这只会从 VLAN 数据库中移除 VLAN 的定义,而不会处理相关的接口配置。以下是步的详细步骤,确保完全删除个 VLAN:1. **连接到交换机**:可以通过控制台口或使用 Telnet 远程连接至交换机。旦建立连接,将进入用户模式(User EXEC Mode),提示符显示为`<Switch>`。2. **切换到特权模式**:在用户模式下输入`en`命令,切换到特权模式(Privileged EXEC Mode),提示符变为`Switch#`。3. **进入全局配置模式**:在特权模式下,输入`conf t`命令,进入全局配置模式,此时提示符变为`Switch(config)#`。4. **移除接口上的 VLAN 配置**:如果 VLAN 已分配给接口,则必须先从接口上移除 VLAN 配置。例如,在删除 VLAN 20 时,可以输入`int f0/1`进入接口配置模式,然后执行命令`no switchport access vlan 20`。如果 VLAN 20 被多个接口使用,则需要对每个接口重复此操作。5. **移除 VLAN 接口**:接下来,删除 VLAN 接口,输入`no interface vlan 20`。这将解除 VLAN 20 对其所有相关接口的配置。6. **彻底删除 VLAN**:最后,执行命令`no vlan 20`,从 VLA
【源码免费下载链接】:https://renmaiwang.cn/s/5drve 二分图完美匹配属于图论中的个重要概念,在该领域中具有特殊意义。特别是在研究匹配理论时,这概念往往成为核心内容之。将节点集合划分为两个互不相交的部分,其中每部分内部的节点之间不会直接相连。完美匹配指的是在这样个结构下,通过特定方式使得每个节点都能与另组中的唯个节点建立连接,并且没有任何剩余的未配对节点存在。匈牙利算法作为种高效的计算方法,在解决二分图最大匹配问题时发挥着关键作用。该算法的基本思路在于逐步构建增广路径来扩大已有的匹配规模,最终达到最大匹配目标。具体而言,条增广路径是条连接两个未被配对节点的路径,在其中交替出现已配对与未配对的状态。每次找到这样的条路径后,通过调整相关边的方向和位置,可以实现匹配数量的增加。在提供的代码实现中,匈牙利算法主要分为以下几个部分:初始化阶段、增广路径搜索函数、主处理函数以及最终输出结果的部分。初始化阶段主要是定义必要的变量参数;增广路径搜索函数用于寻找能够提升当前匹配程度的路径;主处理函数则通过调用上述辅助函数,系统地完成整个匹配过程,并输出最终的匹配数量信息。该算法在多个实际应用场景中展现出强大的实用性,例如解决任务分配、婚姻配对以及网络路由等问题时都发挥着不可替代的作用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值