基于python的时间序列分析_【第四季第2集更新】基于python的时间序列分析

第四季,我们开始介绍一个新的话题:时间序列分析。时间序列分析在金融、气象、交通、宏观经济等诸多领域的应用可以说是非常的广泛。简单点说,时间序列就是在各个时间点上形成的数值序列,而分析的过程就是通过这些数值序列去研究其自身的变化规律。

在python中,时间序列通常使用pandas中的series结构(一个时间点对应一个数值数据)或者dataframe结构(一个时间点对应多个数值数据)来表示,和之前介绍过的series和dataframe结构本质上是一样的,唯一一个重要的不同就是,他的索引数据是时间类型的。

时间类型的数据作为一种特殊的数据形式,和一般的数值类型或者字符串类型相比,要多了不少的讲究。因此在第一节里,我们专门介绍了如何在python中对日期和时间进行表示,这也是后续时间序列分析的基础。

了解了如何表示日期类型数据后,我们在第四季的第2集里,重点来学习时间序列索引的表示方法和处理技巧。

S04E02 时间序列索引的表示方法(连载地址见文末)

本集要点1.pandas时间序列的基本表示

2.时间戳数据类型及索引结构

3.时间周期数据及索引结构

4.时间增量数据及索引结构

5.关于时间频率的问题

历史剧集

S04E01 如何基于python进行时间的表示

本集要点1.时间序列分析概述

2.原生工具:datetime和dateutil

3.Numpy中的日期时间表示

4.pandas的时间日期表示

第四季连载地址:张雨萌-酱油哥:【第四季更新】踏上Python数据科学之路​zhuanlan.zhihu.comv2-25318415a9ec02ccb4eac7dd36fb6f94_180x120.jpg

本季正在持续连载中,敬请关注!

近十年来,研究者分析时间序列数据的方式发生了巨大变化。这本十分必需的书归纳了这一日益重要领域的主要最新进展,并就其现有表述给出了一个单一的一致的表示。汉密尔顿就诸如向量自回归、广义矩方法估计、单位根的经济和统计结果、随时间变化的方差以及非线性时间序列模型等重要创新,首次给出了一本完整的和详细的教科书。另外,汉密尔顿还介绍了动态系统分析的传统工具,如线性表示、自协方差、生成函数、谱分析以及卡尔曼滤子,并介绍了它们在经济理论以及研究并解释真实一世界数据两方面的用途。 本书的目的在于为学生、研究者和预测者提供关于动态系统、经济计量学和时间序列分析方面的概览。从第一个原理开始,汉密尔顿的明析介绍使得新旧进展皆适合于大学一年级学生和非专业人员。另外,时间序列分析从内容的广度和深度上使其成为该领域前沿研究者不可多得的一本参考书。汉密尔顿通过大量的数值例子解释理论结果如何在实践中运用并将大量推导细节放在每章末的数学附录中,以此达到了上述双重目的。本书为该领域的学生和研究者提供了一个路径地图,相信在未来几年内它都会是较权威的指南。 詹姆斯D.汉密尔顿是加利福尼亚大学圣地亚哥分校的经济学教授。他获得了加利福尼亚大学伯克利分校的博士学位,并曾在弗吉尼亚大学任教。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值