- 博客(130)
- 收藏
- 关注
原创 2023/12 拜个师傅带你学算法写论文
本人是985大学计算机硕士毕业,已经工作了8年。在国内大厂工作,目前仍奋战在机器学习深度学习一线。计算机视觉、自然语言处理、推荐系统、大模型等也有相对应的开发老师。已经辅导过近4000+个国内外本科、硕士、博士同学以及高校老师学生等,对其毕业、实习、升职、转行、科研算法论文创新产生过很多帮助。
2023-12-19 13:11:44 1524
原创 数据分析-41-2020死亡公司名单
透过2020年关闭公司数据,着手分析电商行业类公司的关闭原因def 信息(i,name,data):a={"dim": i,return a信息(0,'公司名称',data['公司名称']),信息(1,'行业',行业),信息(2,'地点',地点),信息(3,'获投状态',获投状态),信息(4,'关闭原因',关闭原因)c=(.add(series_name="死亡公司属性",
2024-11-01 16:22:12 237
原创 2024-10-31 算法学习及论文辅导(每日更新,随时联系)
首先有自己的专属学习群,专业老师和助教给你辅导学习提供解答思路,并且班主任也在群里协调请假休息等。大家学习乐趣满满,学习起来也不会枯燥。和向上的大家们一起学习进步💪🏻每掌握一个章节就多进步一点~想要学习好人工智能为自己学业以及就业做准备的同学快联系我定制学习路线~了解你该怎么学习吧。很多同学自己学习遇到问题没人解决,最终消耗了时间,精力同时大大消耗了自己对学习的信心😧。看看学习小群的学习氛围👇🏻。
2024-11-01 10:46:46 85
原创 深度学习常见面试题及答案(41~45)
随机梯度下降(Stochastic Gradient Descent,SGD)是一种优化算法,广泛应用于机器学习和深度学习中,用于最小化损失函数以更新模型参数。在训练模型时,目标是找到一组参数使得损失函数最小化。损失函数衡量了模型预测值与真实值之间的差异。SGD通过在每次迭代中随机选择一个样本(或一小批样本)来计算损失函数的梯度,并根据这个梯度更新模型参数,朝着损失函数减小的方向前进。
2024-10-31 19:51:15 956
原创 自然语言常见面试题及答案(141~145)
在自然语言处理中,词性标注是将文本中的每个词赋予一个词性标签的过程。词性即词语的语法属性,例如名词、动词、形容词、副词等。通过词性标注,可以更好地理解文本的语法结构和语义信息,为后续的自然语言处理任务提供基础。命名实体识别(Named Entity Recognition,NER)是自然语言处理中的一项重要任务,旨在从文本中识别出具有特定意义的实体,并将其分类为预定义的类别,如人名、地名、组织机构名、时间、日期、货币金额等。例如,在句子“苹果公司发布了新款 iPhone。
2024-10-31 19:44:55 438
原创 数据分析-40-电商订单数据分析
该数据是Bilibili的订单用户分析处理。整体分析订单的主要来源,订单状态,订单的价格区间等分析成功交易的订单主要分布在哪些地区,下单时间,渠道,商品名称等等该数据缺乏用户的信息数据不做留存分析,用户特征等的分析。
2024-10-31 19:35:45 798
原创 2024-10-30 算法学习及论文辅导(每日更新,随时联系)
首先有自己的专属学习群,专业老师和助教给你辅导学习提供解答思路,并且班主任也在群里协调请假休息等。大家学习乐趣满满,学习起来也不会枯燥。和向上的大家们一起学习进步💪🏻每掌握一个章节就多进步一点~想要学习好人工智能为自己学业以及就业做准备的同学快联系我定制学习路线~了解你该怎么学习吧。很多同学自己学习遇到问题没人解决,最终消耗了时间,精力同时大大消耗了自己对学习的信心😧。看看学习小群的学习氛围👇🏻。
2024-10-31 19:28:29 111
原创 数据分析-39-用户订阅数据分析(包含代码和数据)
关注公众号:『』或可以通过公众号滴滴我近几年,不少厂商也开始尝试订阅收费模式。在分析具体的用户订阅偏好以及订阅付费模式带来的增长效果时,我们常常会有这些疑问:该数据表共有三个表,分别是:、、。字段描述可以参考以下表的部分截图:customer_cases.csvcustomer_info.csvcustomer_product.csvb、用户注销分布情况整体用户的年龄区间从 21 至 78 之间根据以上两图可得知该产品的用户年龄主要集中在 50-70 之
2024-10-30 10:44:41 585
原创 2024-10-29 算法学习及论文辅导(每日更新,随时联系)
首先有自己的专属学习群,专业老师和助教给你辅导学习提供解答思路,并且班主任也在群里协调请假休息等。大家学习乐趣满满,学习起来也不会枯燥。和向上的大家们一起学习进步💪🏻每掌握一个章节就多进步一点~想要学习好人工智能为自己学业以及就业做准备的同学快联系我定制学习路线~了解你该怎么学习吧。很多同学自己学习遇到问题没人解决,最终消耗了时间,精力同时大大消耗了自己对学习的信心😧。看看学习小群的学习氛围👇🏻。
2024-10-30 10:39:28 591
原创 2024-10-28 算法学习及论文辅导(每日更新,随时联系)
首先有自己的专属学习群,专业老师和助教给你辅导学习提供解答思路,并且班主任也在群里协调请假休息等。大家学习乐趣满满,学习起来也不会枯燥。和向上的大家们一起学习进步💪🏻每掌握一个章节就多进步一点~想要学习好人工智能为自己学业以及就业做准备的同学快联系我定制学习路线~了解你该怎么学习吧。很多同学自己学习遇到问题没人解决,最终消耗了时间,精力同时大大消耗了自己对学习的信心😧。看看学习小群的学习氛围👇🏻。
2024-10-30 10:36:48 130
原创 2024-10-27 算法学习及论文辅导(每日更新,随时联系)
首先有自己的专属学习群,专业老师和助教给你辅导学习提供解答思路,并且班主任也在群里协调请假休息等。大家学习乐趣满满,学习起来也不会枯燥。和向上的大家们一起学习进步💪🏻每掌握一个章节就多进步一点~想要学习好人工智能为自己学业以及就业做准备的同学快联系我定制学习路线~了解你该怎么学习吧。很多同学自己学习遇到问题没人解决,最终消耗了时间,精力同时大大消耗了自己对学习的信心😧。看看学习小群的学习氛围👇🏻。
2024-10-30 10:33:01 177
原创 自然语言常见面试题及答案(136~140)
在自然语言处理中,词向量是将自然语言里的字词转换为计算机能够理解的数值向量形式。语义映射词向量能够把字词的语义信息映射到向量空间中,使得语义相近的词在向量空间中的距离相近。例如,“苹果”和“香蕉”都是水果,它们在词向量空间中的距离会比“苹果”和“汽车”更近。这种语义上的距离可以通过向量的相似度计算方法来衡量,如余弦相似度。若两个词向量的余弦相似度高,说明这两个词在语义上较为相似。语言模型是对自然语言语句的概率分布进行建模的工具,它的主要目的是预测一个语句出现的概率。
2024-10-28 15:49:59 488
原创 数据分析-38-关于互联网企业黑名单的探索
在数字化的时代,信息的力量不言而喻,尤其当我们面临职业选择时。是一个开放源代码项目,旨在收集并分享全球范围内存在争议或不良工作环境的IT公司名单,帮助求职者做出更为明智的职业决策。
2024-10-28 15:26:40 710
原创 2024-10-25 算法学习及论文辅导(每日更新,随时联系)
首先有自己的专属学习群,专业老师和助教给你辅导学习提供解答思路,并且班主任也在群里协调请假休息等。大家学习乐趣满满,学习起来也不会枯燥。和向上的大家们一起学习进步💪🏻每掌握一个章节就多进步一点~想要学习好人工智能为自己学业以及就业做准备的同学快联系我定制学习路线~了解你该怎么学习吧。很多同学自己学习遇到问题没人解决,最终消耗了时间,精力同时大大消耗了自己对学习的信心😧。看看学习小群的学习氛围👇🏻。
2024-10-26 11:29:54 199
原创 2024-10-24 算法学习及论文辅导(每日更新,随时联系)
首先有自己的专属学习群,专业老师和助教给你辅导学习提供解答思路,并且班主任也在群里协调请假休息等。大家学习乐趣满满,学习起来也不会枯燥。和向上的大家们一起学习进步💪🏻每掌握一个章节就多进步一点~想要学习好人工智能为自己学业以及就业做准备的同学快联系我定制学习路线~了解你该怎么学习吧。很多同学自己学习遇到问题没人解决,最终消耗了时间,精力同时大大消耗了自己对学习的信心😧。看看学习小群的学习氛围👇🏻。
2024-10-26 11:27:39 144
原创 2024-10-23 算法学习及论文辅导(每日更新,随时联系)
首先有自己的专属学习群,专业老师和助教给你辅导学习提供解答思路,并且班主任也在群里协调请假休息等。大家学习乐趣满满,学习起来也不会枯燥。和向上的大家们一起学习进步💪🏻每掌握一个章节就多进步一点~想要学习好人工智能为自己学业以及就业做准备的同学快联系我定制学习路线~了解你该怎么学习吧。很多同学自己学习遇到问题没人解决,最终消耗了时间,精力同时大大消耗了自己对学习的信心😧。看看学习小群的学习氛围👇🏻。
2024-10-24 11:36:03 138
原创 数据分析-37-关于德克士店铺位置数据的探索
该数据表一共有3403条数据,共10个字段,分别为loc_numberstatecityloc_namephonelatitudelongitude。
2024-10-23 10:39:48 671
原创 数据分析-36-2022年数据分析岗招聘数据探索
项目借助数据分析招聘岗数据,对岗位要求的技能、学历、要求等进行分析,统计各地区的岗位分布情况,供大家参考或学习关于薪资:相较于传统行业,数据分析岗位的薪资比较可观。关于工作经验:根据工作经验与平均薪资的关系发现,随着相关工作年限的增长,薪资增长幅度也较为明显,数据分析是一个比较有潜力的岗位。其中存在不少无经验/不限经验的岗位,说明初级岗位的门槛也不高,可能出现大量初学者竞争少量初级岗的情况关于学历:基本只需要达到本科就可以胜任工作。
2024-10-23 10:37:13 907
原创 数据分析-35-关于快手APP大学生用户分析数据的探索
背景:利用Python分析快手APP全国大学生用户数据,发现:哪个学校的学生最喜欢使用快手APPAndroid、IOS、PC三大平台用户占比份额全国哪些城市(学校所在地)的学生使用频次最高全国哪些省份的生源最喜欢使用快手APP。
2024-10-22 14:14:11 456
原创 数据分析-33-我国各地区近年来结婚离婚情况分析
中华人民共和国民法典》将于2021年1月1日起施行,因此2021年开始后,有要离婚的夫妻就受到30天冷静期的限制。《中华人民共和国民法典》家庭婚姻编规定了一个月的离婚冷静期,在此期间,任何一方可以向登记机关撤回离婚申请,离婚冷静期将于2021年1月1日起正式执行,针对20年(2003-2022年)我国各地区结婚离婚数据进行分析,到底有哪些地区的离婚率一直高于全国呢。
2024-10-21 16:30:00 1274
原创 数据分析-32-被淘汰的6271家公司的特点分析
本项目主要分析近年来6271家倒闭公司所拥有的特征,总计 6,272 条记录,大小为 2.3 M,包含 21 个字段。如果你想创业或找工作不妨看看或许还能避坑。
2024-10-10 18:44:37 381
原创 数据分析-31-COVID-19 疫情数据分析
关注公众号:『AI学习星球COVID19即可获取数据下载。论文辅导或算法学习可以通过公众号滴滴我。
2024-10-10 11:01:34 302
原创 深度学习常见面试题及答案(26~30)
原理:自注意力机制允许模型在处理每个位置的信息时,能够同时关注输入序列中的所有位置,并根据它们之间的相关性为不同位置分配不同的权重。通过计算每个位置与其他位置的相似度,自注意力机制可以捕捉长距离依赖关系,而无需依赖传统的循环神经网络(RNN)或卷积神经网络(CNN)中的顺序处理。示例:在翻译一个句子时,当处理某个单词时,自注意力机制可以自动关注到句子中其他与该单词相关的单词,无论它们之间的距离有多远。
2024-10-09 17:29:28 717
原创 自然语言常见面试题及答案(126~130)
摒弃了传统的循环神经网络(RNN)和卷积神经网络(CNN)中基于序列顺序的处理方式。自注意力机制允许模型在处理每个位置的信息时,能够直接关注到输入序列中的任意位置。具体来说,对于一个输入序列中的每个位置,它会计算该位置与其他所有位置的相关性得分,然后根据这些得分对其他位置的信息进行加权求和,从而得到该位置的一个新的表示。这种方式能够更好地捕捉长距离的依赖关系,而不像RNN那样容易受到梯度消失或梯度爆炸问题的影响,也不像CNN那样受限于固定的感受野。
2024-10-09 17:00:25 956
原创 数据分析-30-7万条天猫订单数据分析
从每小时订单量走势来看,一天中有3个高峰期(10点、15点、21点),其中21点-22点之间是一天中订单量最多的时候,这个结果和之前 1 亿条淘宝用户行为数据分析 的结果是一致的。对于卖家的指导意义就是,为了提高订单量,高峰期时应该尽量保证客服的回复速度,尤其是晚上21点-22点之间,所以很多做电商的基本都有夜班。根据这个分数结果,我们可以对客户打上一些标签,比如大于 80 分的,标志为优质客户,在资源有限的情况下,可以优先服务好优质客户。,可供挖掘的维度有订单时间、省份(收货地址)。
2024-10-09 16:42:32 1118
原创 深度学习常见面试题及答案(21~25)
反向传播算法(Backpropagation Algorithm)是一种用于训练人工神经网络的方法。在神经网络中,数据从输入层经过一系列隐藏层的处理,最终到达输出层。每个神经元都有一个权重和一个偏置,这些参数决定了神经元的输出。反向传播算法的基本思想是:首先,将一个样本输入到神经网络中,得到网络的输出。然后,计算输出与真实标签之间的误差。接着,从输出层开始,反向地计算每一层的误差对该层参数(权重和偏置)的梯度。最后,根据这些梯度,使用优化算法(如随机梯度下降)来更新网络的参数,使得误差逐渐减小。
2024-09-24 17:45:55 846
原创 自然语言常见面试题及答案(121~125)
命名实体识别呢,就是从一段文本中识别出特定类型的实体,比如人名、地名、组织机构名、时间、日期、货币金额等等。比如说在这样一句话里“小明昨天去了北京,参观了故宫博物院。”通过命名实体识别,我们可以识别出“小明”是人名,“北京”是地名,“故宫博物院”是组织机构名。在实际中的应用场景有很多哦。一、信息抽取:从大量的文本中自动抽取关键信息。比如在新闻报道中,可以快速提取出涉及的人物、地点、事件等关键要素,方便进行新闻分类、事件追踪等。二、智能问答系统。
2024-09-24 17:32:24 882
原创 深度学习常见面试题及答案(16~20)
在每次迭代中,SGD 只需要计算一个样本(或一个小批量样本)的梯度,而不是整个数据集的梯度。这使得它在处理大规模数据集时计算速度非常快,因为不需要等待整个数据集的梯度计算完成。特别是在现代深度学习中,数据集通常非常庞大,使用 SGD 可以大大减少每次迭代的计算时间,加快模型的训练速度。
2024-09-21 11:14:25 721
原创 自然语言常见面试题及答案(116~120)
词嵌入(Word Embedding)是将自然语言中的词表示为实数向量的一种技术。其目的是将词汇的语义信息编码到向量空间中,使得语义相近的词在向量空间中的距离较近,语义不同的词距离较远。通过这种方式,计算机可以更有效地处理和理解自然语言。例如,在文本分类任务中,词向量可以作为输入特征,帮助模型更好地理解文本的含义;在机器翻译中,词向量可以用于表示源语言和目标语言中的词汇,提高翻译的准确性。
2024-09-21 10:58:08 757
原创 深度学习常见面试题及答案(11~15)
算法学习、4对1辅导、论文辅导或核心期刊以及其他学习资源可以通过公众号滴滴我文章目录11. 解释一下神经网络中的反向传播算法的作用。一、计算误差二、误差反向传播三、参数更新12. 简述深度学习中的过拟合问题及常见的解决方法。一、过拟合问题的表现二、过拟合问题的原因三、常见的解决方法13. 介绍一下常见的深度学习优化算法,如随机梯度下降(SGD)、Adam 等。一、随机梯度下降(Stochastic Gradient Descent,SGD)二、Adam(Adaptive Moment Estimatio
2024-09-20 11:12:48 1053
原创 深度学习常见面试题及答案(6~10)
学习率(learning rate)是在深度学习中用于控制模型参数更新幅度的一个超参数。在优化算法(如随机梯度下降等)中,学习率决定了每次参数更新时朝着损失函数下降方向前进的步长。如果学习率设置得过大,可能会导致参数更新步子过大,使得模型在优化过程中跳过最优解,甚至导致模型无法收敛;如果学习率设置得过小,参数更新会非常缓慢,需要更多的训练迭代次数才能达到较好的性能,这会增加训练时间成本。
2024-09-19 16:45:09 986
原创 自然语言常见面试题及答案(106~110)
词性标注是指为文本中的每个词确定其词性的过程,即将单词标注为名词、动词、形容词、副词等不同的词性类别。命名实体识别(Named Entity Recognition,NER)是指从文本中识别出具有特定意义的实体,如人名、地名、组织机构名、时间、日期、货币等。
2024-09-19 16:34:41 616
原创 深度学习常见面试题及答案(1~5)
循环神经网络(Recurrent Neural Network,RNN)是一种专门用于处理序列数据的神经网络。反向传播算法(Backpropagation Algorithm)是深度学习中用于训练神经网络的核心算法。反向传播算法基于链式求导法则,将误差从输出层反向传播至输入层,以调整网络中的权重和偏置。
2024-09-18 14:44:31 1294
原创 自然语言常见面试题及答案(81~100)
Attention 机制(注意力机制)是一种在深度学习中用于聚焦和分配权重的技术,它允许模型动态地根据输入的不同部分的重要性来分配不同的关注度。在 NLP 任务中,Attention 机制的应用方式机器翻译:在翻译过程中,根据源语言句子中不同单词对于生成目标语言单词的重要性,分配不同的注意力权重。这样可以更好地捕捉长距离的依赖关系和上下文信息。文本分类:对输入文本的不同部分赋予不同的权重,突出对分类任务更关键的部分。情感分析:关注文本中与情感表达最相关的词语或短语,以更准确地判断情感倾向。问答系统。
2024-09-11 17:44:30 933
数据分析-40-电商订单数据分析
2024-10-31
数据分析-39-用户订阅数据分析
2024-10-30
数据分析-38-关于互联网企业黑名单的探索
2024-10-28
数据分析-37-关于德克士店铺位置数据的探索
2024-10-23
数据分析-35-关于快手APP大学生用户分析数据的探索
2024-10-22
数据分析-33-我国各地区近年来结婚离婚情况分析
2024-10-21
「统计学习方法」第2版的课件PPT版本
2024-08-05
Python数据挖掘入门与实战的思维导图总结
2023-08-22
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人