这里分别介绍怎么利用sympy.dsolve求解常微分方程和常微分方程组。
#首先利用sympy.dsolve求解单个的常微分方程:
#代码
from sympy import Function, dsolve, Derivative, symbols
from sympy.abc importt
#sympy.abc表示This module exports all latin and greek letters as Symbols。上行代码意思是导入字母t,因为t字母在dsolve函数中要被使用,而dsolve函数中的x这里不需要导入是因为在下一行会声明x变量
x = Function('x')
#上行代码等效于x = symbols('x', cls=Function),意思是声明x为因变量函数
result=dsolve(Derivative(x(t), t, 4) - 22*Derivative(x(t), t, 2) - 24*x(t))
#result=dsolve(Derivative(x, t, 4) - 22*Derivative(x, t, 2) - 24*x),这样写是不可以的
#Derivative(x(t), t, i)可以写成diff(x(t), t, i),或者写成Derivative(x(t), t, t, t, t)和diff(x(t), t, t, t, t)都表示函数x(t)对t的四阶导数,注意如果要使用diff函数,在第一行代码中要加入from sympy import diff。此外,diff()除了作为函数使用,还可以作为一