python解决常微分方程组_Python-sympy.dsolve求解常微分方程(组)

本文介绍了如何使用Python的Sympy库求解单个常微分方程及常微分方程组。示例包括一阶四阶导数方程和一组二阶线性方程。通过dsolve函数,得到的解包含指数函数和常数项。同时,文章提及了可能涉及的复数根和欧拉公式在验证解的过程中可能的应用。
摘要由CSDN通过智能技术生成

这里分别介绍怎么利用sympy.dsolve求解常微分方程和常微分方程组。

#首先利用sympy.dsolve求解单个的常微分方程:

#代码

from sympy import Function, dsolve, Derivative, symbols

from sympy.abc importt

#sympy.abc表示This module exports all latin and greek letters as Symbols。上行代码意思是导入字母t,因为t字母在dsolve函数中要被使用,而dsolve函数中的x这里不需要导入是因为在下一行会声明x变量

x = Function('x')

#上行代码等效于x = symbols('x', cls=Function),意思是声明x为因变量函数

result=dsolve(Derivative(x(t), t, 4) - 22*Derivative(x(t), t, 2) - 24*x(t))

#result=dsolve(Derivative(x, t, 4) - 22*Derivative(x, t, 2) - 24*x),这样写是不可以的

#Derivative(x(t), t, i)可以写成diff(x(t), t, i),或者写成Derivative(x(t), t, t, t, t)和diff(x(t), t, t, t, t)都表示函数x(t)对t的四阶导数,注意如果要使用diff函数,在第一行代码中要加入from sympy import diff。此外,diff()除了作为函数使用,还可以作为一

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值