单维的高斯模型:
求解一维的高斯模型参数时,我们可以使用最大似然法,其对数似然函数的表达式(log-likelyhood)如下:
对均值和方差求偏导可以求的高斯分布中的
在混合高斯模型中,
记
其对数似然函数如下:
对数函数中有加法,求导数方式很难求得参数
。
因此我们引入隐变量
,并且使用迭代的方式来求参数
。
隐变量
,表示第i个数据属于哪一个高斯分布。
EM的迭代公式如下:
这里的
是上一次迭代得到的参数,是一个常数, 只有
是优化的变量 ,记其中的积分式为
(本文暂时不证明该公式的收敛性)
现在来定义混合高斯模型中的
和
:
将上面两个表达是带入到EM算法公式里去,限制考虑积分里的式子,也就是E-step:
只考虑求和符号中
的那一部分:
再考虑所有的
的情况:
因为
,所以:
交换求和符号顺序
将
改为
此时再对
三个参数求导。
:
:
最后得到的结果为: