
单维的高斯模型:
求解一维的高斯模型参数时,我们可以使用最大似然法,其对数似然函数的表达式(log-likelyhood)如下:
对均值和方差求偏导可以求的高斯分布中的
在混合高斯模型中,
记
其对数似然函数如下:
对数函数中有加法,求导数方式很难求得参数
因此我们引入隐变量
隐变量
EM的迭代公式如下:
这里的
(本文暂时不证明该公式的收敛性)
现在来定义混合高斯模型中的
将上面两个表达是带入到EM算法公式里去,限制考虑积分里的式子,也就是E-step:
只考虑求和符号中
再考虑所有的
因为
此时再对
最后得到的结果为: