混合高斯模型_EM算法求解高斯混合模型(GMM)

49c2a725601ba3d21d645a7b48b9565b.png

单维的高斯模型:

求解一维的高斯模型参数时,我们可以使用最大似然法,其对数似然函数的表达式(log-likelyhood)如下:

对均值和方差求偏导可以求的高斯分布中的

在混合高斯模型中,

其对数似然函数如下:

对数函数中有加法,求导数方式很难求得参数

因此我们引入隐变量

,并且使用迭代的方式来求参数

隐变量

,表示第i个数据属于哪一个高斯分布。

EM的迭代公式如下:

这里的

是上一次迭代得到的参数,是一个常数, 只有
是优化的变量 ,记其中的积分式为

(本文暂时不证明该公式的收敛性)

现在来定义混合高斯模型中的

:

将上面两个表达是带入到EM算法公式里去,限制考虑积分里的式子,也就是E-step:

只考虑求和符号中

的那一部分:

再考虑所有的

的情况:

因为

,所以:

交换求和符号顺序

改为

此时再对

三个参数求导。

:

:

最后得到的结果为:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值