python求矩阵特征值和特征向量_numpy.linalg.eig() 计算矩阵特征向量方式

本文介绍了如何使用numpy库的linalg.eig()函数来计算矩阵的特征值和特征向量,通过示例代码详细展示了不同矩阵的计算结果,并提供了官方文档链接。
摘要由CSDN通过智能技术生成

在PCA中有遇到,在这里记录一下

计算矩阵的特征值个特征向量,下面给出几个示例代码:

在使用前需要单独import一下

>>> from numpy import linalg as LA

>>> w, v = LA.eig(np.diag((1, 2, 3)))

>>> w; v

array([ 1., 2., 3.])

array([[ 1., 0., 0.],

[ 0., 1., 0.],

[ 0., 0., 1.]])

>>> w, v = LA.eig(np.array([[1, -1], [1, 1]]))

>>> w; v

array([ 1. + 1.j, 1. - 1.j])

array([[ 0.70710678+0.j , 0.70710678+0.j ],

[ 0.00000000-0.70710678j, 0.00000000+0.70710678j]])

>>> a = np.array([[1, 1j], [-1j, 1]])

>>> w, v = LA.eig(a)

>>> w; v

array([ 2.00000000e+00+0.j, 5.98651912e-36+0.j]) # i.e., {2, 0}

array([[ 0.00000000+0.70710678j, 0.70710678+0.j ],

[ 0.70710678+0.j , 0.00000000+0.70710678j]])

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值