pythonmatplotlib共享绘图区域_python matplotlib 绘图 和 dpi对应关系详解

我就废话不多说啦!

dpi=1     600×400

dpi=2    1200×800

dpi=3    1800×1200

........

dpi=21    (21×600)×(21×400) ---> 12600×8400

示例代码:

...............

...............

plt_temp=y_axis

plt_temp.resize(len(y_axis) , 1)

plt_arr=np.concatenate((plt_arr,plt_temp ), axis=1)

#print(self.plt_arr)

if plt_x%1000==0:

print(plt_x)

if plt_x%1000==0:

cm='hot'

norm = matplotlib.colors.Normalize(vmin=min, vmax=max)

map=plt.imshow(plt_arr,interpolation='nearest',cmap=cm,norm=norm, origin='upper')

plt.xticks([])

plt.yticks([])

plt.axis('off')

#plt.colorbar(mappable=map,ax=None,shrink=0.5, pad=0)

plt.savefig("filename.png", dpi=1320) # 加参数 ,bbox_inches='tight' ,pad_inches=0 可以得到窄边框图片

#plt.show()print(plt_x)

plt_x+=1

temp_str=str(num_now)

return donser_now_lable

............

............

上代码读入一个二进制bin数据文件1.08GB的一部分,数据格式为无包头、小端模式、16位编码的频谱数据dpi=1320,生成名称为filename.png的图片

补充知识:Python绘图问题:Matplotlib中指定图片大小

我们在用Matplotlib画图的时候可能会遇到当在一张面板上显示太多的图片时,plt.show出来就会显示的很小

像下图的样子

这时候用改变子图片间距的方法也解决不了问题:

plt.subplots_adjust(wspace=0.1, hspace=0.2)

于是我们用

plt. figure(figsize=(5,8))

# 可以按5比8的大致 比例增加来增大图片的像素

# 例如 plt. figure(figsize=(10,16))

里面的参数第一个5应该是5列,8是8行,如果不行就是试着换成别的参数 但是需要按照大概的比例

按比例增加参数大小以后:

这样就好多了!

以上这篇python matplotlib 绘图 和 dpi对应关系详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值