一、基本原理
1.1图像拼接
1.2RANSAC算法
1.2.1步骤
二、整体流程
三、图像集
3.1图像集BIG
3.2图像集jia
3.3图像集soft
3.4图像集xiaoxue
四、代码
五、实验结果
六、实验总结
七、遇到的问题
一、基本原理
1.1图像拼接:
图像拼接就是把多张有重叠部分的图片拼接成一张无缝隙而且分辨率高的图像,(多张图像可以从不同的视觉、不同的时间、相同的视觉获得)
1.2RANSAC算法:
RANSAC的全称是“RANdom SAmple Consensus(随机抽样一致)”。它可以从一组包含“局外点”的观测数据集中,通过迭代方式估计数学模型的参数。它是一种不确定的算法,也就是说它有一定的概率得出一个合理的结果,所以为了提高概率必须提高迭代次数。
1.2.1步骤:
1.根据给定图像/集,实现特征匹配
2. 通过匹配特征计算图像之间的变换结构
3..利用图像变换结构,实现图像映射
4..针对叠加后的图像,采用APAP之类的算法,对齐特征点
5. 通过图割方法,自动选取拼接缝
6. 根据multi-band bleing策略实现融合
二、基本流程
1.针对某个场景拍摄多张图像
2.计算第二张图像跟第一张图像之间的变换关系
3.将第二张图像叠加到第一张图像的坐标系中
4.变换后的融合、合成
5.在多图场景中,重复上述过程
三、图