python ransac_python-基于RANSAC算法的图像拼接

本文介绍了基于RANSAC算法的图像拼接原理和流程,包括图像的特征匹配、变换结构计算、图像映射等步骤。通过实验展示了不同场景下(室内近景、远景及室外场景)的拼接效果,强调了特征点丰富度和光照条件对拼接质量的影响。同时,总结了实验中遇到的问题和解决方案,如图像尺寸调整、拍摄角度等。
摘要由CSDN通过智能技术生成

一、基本原理

1.1图像拼接

1.2RANSAC算法

1.2.1步骤

二、整体流程

三、图像集

3.1图像集BIG

3.2图像集jia

3.3图像集soft

3.4图像集xiaoxue

四、代码

五、实验结果

六、实验总结

七、遇到的问题

一、基本原理

1.1图像拼接:

图像拼接就是把多张有重叠部分的图片拼接成一张无缝隙而且分辨率高的图像,(多张图像可以从不同的视觉、不同的时间、相同的视觉获得)

1.2RANSAC算法:

RANSAC的全称是“RANdom SAmple Consensus(随机抽样一致)”。它可以从一组包含“局外点”的观测数据集中,通过迭代方式估计数学模型的参数。它是一种不确定的算法,也就是说它有一定的概率得出一个合理的结果,所以为了提高概率必须提高迭代次数。

1.2.1步骤:

1.根据给定图像/集,实现特征匹配

2. 通过匹配特征计算图像之间的变换结构

3..利用图像变换结构,实现图像映射

4..针对叠加后的图像,采用APAP之类的算法,对齐特征点

5. 通过图割方法,自动选取拼接缝

6. 根据multi-band bleing策略实现融合

二、基本流程

1.针对某个场景拍摄多张图像

2.计算第二张图像跟第一张图像之间的变换关系

3.将第二张图像叠加到第一张图像的坐标系中

4.变换后的融合、合成

5.在多图场景中,重复上述过程

三、图

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值