如图,平行四边形ABCD的一边AB=12厘米,AB上的高等于8厘米,四边形EFOG的面积等于8平方厘米,则阴影部分的面积与平行四边形的面积之比是多少?

解析:首先我们要知道平行四边形对角线互相平分这个定理,平行四边形两条对角线相交,交点为两条线段的中点。可推出平行四边形里由2条对角线形成的四个三角形面积相等。
平行四边形的面积等于底乘以高,我们可求得S=AB*h=96平方厘米,BOC的面积S1=96除以4=24平方厘米.
我们可以看到阴影三角形ABF和DCG各自处于三角形ABE和DEC内,EFOG就是三角形BOC减去空白三角形BFE和EGC的面积,面积为8平方厘米。
三角形ADE和平行四边形等底等高,所以三角形ADE的面积是平行四边形的面积的一半,三角形ABE和DEC的面积和为四边形面积的2分之1即48平方厘米。
S阴影=SABE+SDEC-(SBFE+SEGC)=48-(24-8)=32平方厘米
即S阴影:S平行四边形=32:96=1:3
