python八大排序算法速度实例对比

这篇文章并不是介绍排序算法原理的,纯粹是想比较一下各种排序算法在真实场景下的运行速度。

算法由 Python 实现,可能会和其他语言有些区别,仅当参考就好。

测试的数据是自动生成的,以数组形式保存到文件中,保证数据源的一致性。

排序算法

直接插入排序

时间复杂度:O(n²)
空间复杂度:O(1)
稳定性:稳定

1

2

3

4

5

6

7

def insert_sort(array):

  for i in range(len(array)):

    for j in range(i):

      if array[i] < array[j]:

        array.insert(j, array.pop(i))

        break

  return array

希尔排序

时间复杂度:O(n)
空间复杂度:O(n√n)
稳定性:不稳定

1

2

3

4

5

6

7

8

9

def shell_sort(array):

  gap = len(array)

  while gap > 1:

    gap = gap // 2

    for i in range(gap, len(array)):

      for j in range(i % gap, i, gap):

        if array[i] < array[j]:

          array[i], array[j] = array[j], array[i]

  return array

简单选择排序

时间复杂度:O(n²)
空间复杂度:O(1)
稳定性:不稳定

1

2

3

4

5

6

7

8

def select_sort(array):

  for i in range(len(array)):

    x = i # min index

    for j in range(i, len(array)):

      if array[j] < array[x]:

        x = j

    array[i], array[x] = array[x], array[i]

  return array

堆排序

时间复杂度:O(nlog₂n)
空间复杂度:O(1)
稳定性:不稳定

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

def heap_sort(array):

  def heap_adjust(parent):

    child = 2 * parent + 1 # left child

    while child < len(heap):

      if child + 1 < len(heap):

        if heap[child + 1] > heap[child]:

          child += 1 # right child

      if heap[parent] >= heap[child]:

        break

      heap[parent], heap[child] = \

        heap[child], heap[parent]

      parent, child = child, 2 * child + 1

  heap, array = array.copy(), []

  for i in range(len(heap) // 2, -1, -1):

    heap_adjust(i)

  while len(heap) != 0:

    heap[0], heap[-1] = heap[-1], heap[0]

    array.insert(0, heap.pop())

    heap_adjust(0)

  return array

冒泡排序

时间复杂度:O(n²)
空间复杂度:O(1)
稳定性:稳定

1

2

3

4

5

6

def bubble_sort(array):

  for i in range(len(array)):

    for j in range(i, len(array)):

      if array[i] > array[j]:

        array[i], array[j] = array[j], array[i]

  return array

快速排序

时间复杂度:O(nlog₂n)
空间复杂度:O(nlog₂n)
稳定性:不稳定

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

def quick_sort(array):

  def recursive(begin, end):

    if begin > end:

      return

    l, r = begin, end

    pivot = array[l]

    while l < r:

      while l < r and array[r] > pivot:

        r -= 1

      while l < r and array[l] <= pivot:

        l += 1

      array[l], array[r] = array[r], array[l]

    array[l], array[begin] = pivot, array[l]

    recursive(begin, l - 1)

    recursive(r + 1, end)

  recursive(0, len(array) - 1)

  return array

归并排序

时间复杂度:O(nlog₂n)
空间复杂度:O(1)
稳定性:稳定

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

def merge_sort(array):

  def merge_arr(arr_l, arr_r):

    array = []

    while len(arr_l) and len(arr_r):

      if arr_l[0] <= arr_r[0]:

        array.append(arr_l.pop(0))

      elif arr_l[0] > arr_r[0]:

        array.append(arr_r.pop(0))

    if len(arr_l) != 0:

      array += arr_l

    elif len(arr_r) != 0:

      array += arr_r

    return array

  def recursive(array):

    if len(array) == 1:

      return array

    mid = len(array) // 2

    arr_l = recursive(array[:mid])

    arr_r = recursive(array[mid:])

    return merge_arr(arr_l, arr_r)

  return recursive(array)

基数排序

时间复杂度:O(d(r+n))
空间复杂度:O(rd+n)
稳定性:稳定

1

2

3

4

5

6

7

8

9

10

11

12

def radix_sort(array):

  bucket, digit = [[]], 0

  while len(bucket[0]) != len(array):

    bucket = [[], [], [], [], [], [], [], [], [], []]

    for i in range(len(array)):

      num = (array[i] // 10 ** digit) % 10

      bucket[num].append(array[i])

    array.clear()

    for i in range(len(bucket)):

      array += bucket[i]

    digit += 1

  return array

速度比较

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

from random import random

from json import dumps, loads

# 生成随机数文件

def dump_random_array(file='numbers.json', size=10 ** 4):

  fo = open(file, 'w', 1024)

  numlst = list()

  for i in range(size):

    numlst.append(int(random() * 10 ** 10))

  fo.write(dumps(numlst))

  fo.close()

# 加载随机数列表

def load_random_array(file='numbers.json'):

  fo = open(file, 'r', 1024)

  try:

    numlst = fo.read()

  finally:

    fo.close()

  return loads(numlst)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

from _datetime import datetime

# 显示函数执行时间

def exectime(func):

  def inner(*args, **kwargs):

    begin = datetime.now()

    result = func(*args, **kwargs)

    end = datetime.now()

    inter = end - begin

    print('E-time:{0}.{1}'.format(

      inter.seconds,

      inter.microseconds

    ))

    return result

  return inner

如果数据量特别大,采用分治算法的快速排序和归并排序,可能会出现递归层次超出限制的错误。

解决办法:导入 sys 模块(import sys),设置最大递归次数(sys.setrecursionlimit(10 ** 8))。

1

2

3

4

5

6

7

8

9

@exectime

def bubble_sort(array):

  for i in range(len(array)):

    for j in range(i, len(array)):

      if array[i] > array[j]:

        array[i], array[j] = array[j], array[i]

  return array

array = load_random_array()

print(bubble_sort(array) == sorted(array))

↑ 示例:测试直接插入排序算法的运行时间,@exectime 为执行时间装饰器。

算法执行时间

算法速度比较

总结

以上就是本文关于Python八大排序算法速度实例对比的全部内容,希望对大家有所帮助。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值