算法练习Day20[LeetCode]70. 爬楼梯

70. 爬楼梯

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

注意:给定 n 是一个正整数。

示例 1:
输入: 2
输出: 2
解释: 有两种方法可以爬到楼顶。

  1. 1 阶 + 1 阶
  2. 2 阶

示例 2:
输入: 3
输出: 3

解释: 有三种方法可以爬到楼顶。

  1. 1 阶 + 1 阶 + 1 阶
  2. 1 阶 + 2 阶
  3. 2 阶 + 1 阶

方法:动态规划

我们用 f(x) 表示爬到第 x级台阶的方案数,考虑最后一步可能跨了一级台阶,也可能跨了两级台阶,所以我们可以列出如下式子:

f(x) = f(x−1) + f(x − 2)
class Solution {
    public int climbStairs(int n) {
     if(n == 1)
     return 1;
     int[] dp = new int[n+1];
     dp[1]=1;
     dp[2]=2;
     for(int i=3;i<=n;i++){
		dp[i]=dp[i-1]+dp[i-2];
	  }
	return dp[n];
    
 }
}

时间复杂度和空间复杂度都是 O(n) 的实现,但是由于这里的 f(x)只和 f(x - 1)与 f(x - 2) 有关,所以我们可以用「滚动数组思想」把空间复杂度优化成 O(1)

优化:利用滚动数组

滚动数组是一种编程思想。简单的理解就是让数组滚动起来,每次都使用固定的几个存储空间,来达到压缩,节省存储空间的作用。因为题目是一个自底向上的扩展过程,我们需要用到的是连续的解,前面的解往往可以舍去。

class Solution {
    public int climbStairs(int n) {
        int p = 0, q = 0, r = 1;
        //设置边界条件,i=1时,r=1
        for (int i = 1; i <= n; ++i) {
            p = q; 
            q = r; 
            r = p + q;
        }
        return r;
    }
}

复杂度分析

  • 时间复杂度:循环执行 n 次,每次花费常数的时间代价,故渐进时间复杂度为 O(n)。
  • 空间复杂度:这里只用了常数个变量作为辅助空间,故渐进空间复杂度为 O(1)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值