70. 爬楼梯
假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
注意:给定 n 是一个正整数。
示例 1:
输入: 2
输出: 2
解释: 有两种方法可以爬到楼顶。
- 1 阶 + 1 阶
- 2 阶
示例 2:
输入: 3
输出: 3
解释: 有三种方法可以爬到楼顶。
- 1 阶 + 1 阶 + 1 阶
- 1 阶 + 2 阶
- 2 阶 + 1 阶
方法:动态规划
我们用 f(x) 表示爬到第 x级台阶的方案数,考虑最后一步可能跨了一级台阶,也可能跨了两级台阶,所以我们可以列出如下式子:
f(x) = f(x−1) + f(x − 2)
class Solution {
public int climbStairs(int n) {
if(n == 1)
return 1;
int[] dp = new int[n+1];
dp[1]=1;
dp[2]=2;
for(int i=3;i<=n;i++){
dp[i]=dp[i-1]+dp[i-2];
}
return dp[n];
}
}
时间复杂度和空间复杂度都是 O(n) 的实现,但是由于这里的 f(x)只和 f(x - 1)与 f(x - 2) 有关,所以我们可以用「滚动数组思想」把空间复杂度优化成 O(1)
优化:利用滚动数组
滚动数组是一种编程思想。简单的理解就是让数组滚动起来,每次都使用固定的几个存储空间,来达到压缩,节省存储空间的作用。因为题目是一个自底向上的扩展过程,我们需要用到的是连续的解,前面的解往往可以舍去。
class Solution {
public int climbStairs(int n) {
int p = 0, q = 0, r = 1;
//设置边界条件,i=1时,r=1
for (int i = 1; i <= n; ++i) {
p = q;
q = r;
r = p + q;
}
return r;
}
}
复杂度分析
- 时间复杂度:循环执行 n 次,每次花费常数的时间代价,故渐进时间复杂度为 O(n)。
- 空间复杂度:这里只用了常数个变量作为辅助空间,故渐进空间复杂度为 O(1)。