asp从后台调出的公式怎么参与运算_吴望一《流体力学》第一章中微分运算公式的初等证明...

74a0d147cba18a17fb3699df41c16b23.png

本文中,矢量场均用箭头指示,例如

为矢量场,
为标量场。

本文只涉及吴望一《流体力学》第一章中所列的17条微分运算公式,不含积分运算公式。

先把所有公式一并列出,以便查找:

1、


2、

3、

4、

5、

6、

7、

8、

9、

10、

11、

12、(拉普拉斯算子的定义)

13、(旋度的散度为零)

14、(梯度的旋度为零)

15、

16、

17、

下面逐个证明这17条公式。

1、

证明:Nabla算子是线性的。这个显然成立,过程略。

2、

证明:可以像计算两函数乘积的微分一样计算Nabla算子。也就是:

,其中下标c是“视作常量”的意思。在
中,
被视作常量,不参与微分运算,因此可以移到Nabla算子之外,也就是
。类似地
。证毕。

3、

,其中矢量
是矢径
,标量
是矢径长度(注:书中可能把标量r和矢量r搞反了)。

证明:我们先来考察

的x分量,根据梯度的定义,它应该是
,注意这里
是一个标量场,
是一个标量到标量的函数。那么,根据复合函数的微分运算法则,我们有:

这样把三个分量加起来就是:

,显然,这个其实也就是:
.

后面那个式子,就是把函数

换了个名字叫
(它和第一问中的
毫无关系),并且把用于产生函数参数的标量场取作矢径长度
,我们可以轻易计算出
,对其他两个坐标轴有类似推导,总之可以得到
,证毕。

4、

证明:和梯度一样,散度算子也是线性的。略。

5、

证明:先展开,也就是

,其中
就代表矢量场
分量。

然后可以使用函数乘积的微分运算规则,比如说

,把后面两项也作类似展开,那就是:

合并一下就是:

前面一项就是

,后面那项就是
.

有一个简便的理解:也可以采用函数乘积微分运算法则写成

,前一项自然没什么问题,就是
,而后一项,Nabla算子要和标量场
作用,怎么作用呢,那就只有
,再和
做点积了。

6、

证明:这个同样适用乘积的运算法则,也就是

而,“先叉积再点积”就是标量三重积(混合积),参与运算的是三个矢量场,结果是一个 标量场,这个标量场等于一个行列式:

在做运算的时候,可以把Nabla算子看作一个矢量,像这样用行列式展开也就是:

其中

的意思就是“视作常量的
分量”。而Nabla算子的三个分量就是沿三个坐标的偏导数,比如
.

然后我们试图把上面两个行列式写回三重积的形式。我们希望把Nabla算子放在第二项,这就需要按循环顺序重新排列三行,这不会改变行列式的值:

但这样还不行,因为Nabla算子不能和常量作用,

这是无意义的。所以需要交换第一个行列式的1,3行,这样会导致行列式变号:

当然,最终结果里的

下标没有意义,可以略去,因为我们并没有计算它的微分。也就是:

,证毕。

7、

证明:和梯度、散度一样,旋度算子也是线性的。

8、

证明:我们用旋度的行列式定义将左端展开为

类似用乘积微分法则展开之:

先来看第一项,这个

不参与微分运算,而且是一个标量场,因此完全可以提到外边,则行列式变成:

再来看第二项。我们可以观察到,在行列式展开的每一项里面,

的各个分量都不参与微分运算,所有微分运算都在
上发生,而
又是一个标量场,所以可以把它“提”到第二行,也就是:

到这里你可以发现,第二行的

是啥?那不就是
么,整个行列式也就等于
,这样把两项加起来,得到
,证毕。

当然和第5题一样,也有一个比较简便的理解方式:

,其中
,后一项也是因为标量场
只能做梯度,所以需要把叉乘“保留”到后面。这类似第5题里面的
.

9、

这里注意,矢量点积Nabla算子的结果仍然是一个微分算子,比如

,而后如果把这个算子作用于矢量场
,得到的结果仍然是一个矢量,每个分量单独计算,比如它的x分量就是
。可以发现,这个微分算子
并不会改变作用对象的维数,它作用在矢量场上得到一个矢量场,作用在标量场上还得到一个标量场。所以在我们可以把这个微分算子认为是一个“标量”。

计算这个需要用到向量三重积(矢量三重积)公式:

,注意后面两项都是矢量乘标量。可以用口诀“bac-cab”(音back-cab)记忆。

使用乘积微分法则:

用向量三重积公式展开第一项:

这个

该如何理解呢?理解方法就是,
不参与微分运算,它和
点积得到的就是一个微分算子,作用在
上。也可以理解为,利用乘法交换律,调换一下顺序:

省略了

代表常量的下标
,同时省略了不必要的括号。

然后再来展开第二项,也需要类似调换一下顺序:

把两项起来就得到:

证毕。

10、

证明:还是先用乘积微分法则展开:

右边两项怎么展开呢?需要用一下向量三重积。用向量三重积展开

得到:

第一个等号右端给

加常量下标
的原因,是它并没有在
中参与微分运算。

把等式右端的

移到左端,我们就得到了:

类似地也有:

加起来就得到:

证毕。

11、

这里面的

意思是矢量
模长的平方,也就是

证明方法很简单,在上面的第10题里取

即可。

然后这个式子可以写作

12、(拉普拉斯算子的定义)

证明:

13、(旋度的散度为零)

证明:这是

三个矢量的混合积

等于零的原因是行列式中两行相同。

14、(梯度的旋度为零)

证明:

观察可以发现,它的

分量为

类似地,

分量也为零。

15、

证明:用向量三重积展开得到

当然最后一项就是

.

16、

证明:在第5题中我们得到

令这里面的

,则有:

其中

证毕

17、

证明:

而根据乘积微分法则,

因此

在其中用两次第16题的结果,就得到

证毕。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值