多元函数求极值中的a_第八节多元函数的极值及其求法.ppt

高等数学电子教案 武汉科技学院数理系 第八节 多元函数的极值及其求法 在实际问题中常常遇到多元函数的最值问题.在一元函 数的微分学中,我们曾经用导数求解极值和最值问题;现 在讨论如何利用偏导数来求多元函数的极值与最值,讨论 时以二元函数为例,其结论可类似地推广到三元及三元以 上的函数. 一. 多元函数的极值及最大值,最小值 多元函数极值的定义 定义 设函数z=f(x,y)在点(x0,y0)的某个邻域内有定义,如果对 于该邻域内不同于(x0,y0)的任何点(x,y),都有f(x,y)f(x0,y0)),则称函数f(x,y)在点(x0,y0)处有极大值(极小值) 极大值和极小值统称为极值,使函数取得极值的点称为极值点. (0,0)处函数值为R;而在(0,0)邻域内 ,(0,0)的点的函数 值都小于 在点(0,0)处有极小值.因为在任何不 在点(0,0)处有极大值,因为在 与z轴的交点. 例1 同于(0,0)的点处的函数值都大于函数在(0,0)处的值.从几何图形上看这是显然的.因为点(0,0)是圆锥 在(0,0)处的顶点。 .例2 函数 R.事实上(0,0,R)是上半球面 例3 函数z=-2xy 在点(0,0)处不取得极值.因为在(0,0)点的任 一邻域内,总有使函数值为正的点,也有使函数值为负的点. 2.极值存在的必要条件和充分条件 与一元函数类似,我们用偏导数来判定二元函数的极值. 定理1(极值存在的必要条件) 设函数z=f(x,y)在点(x0 ,y0)处 可微分且在点(x0 ,y0)处有极值,则在该点的偏导数必然为零. 证明: 只就极大值的情形加以证明. 因为函数z=f(x,y)在点(x0 ,y0)处有极大值,所以对于(x0 ,y0)的 某个邻域内不同于(x0 ,y0 )的任一点(x,y),有 f(x,y)0时 有极小值; (2)当△=B2-AC>0时,(x0,y0)不是极值点. (3)当△=B2-AC=0时,函数在(x0,y0)可能有极值,也可能没有极值, 需要讨论. 定理证明从略. 第一步 解方程组fx(x,y)=0, fy(x,y)=0.求出所有的实数解, 即得一切驻点; 第二步 对于每个驻点(x0,y0),求出二阶偏导数A,B和C; 第三步 由△=B2-AC的符号判断驻点是否为极值点,若是 极

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值