正负数据如何归一化_数据归一化方法大全

数据归一化方法大全

在数据分析之前,

我们通常需要先将数据标准化

(

normalization

)

利用标

准化后的数据进行数据分析。

数据标准化也就是统计数据的指数化。

数据标准化

处理主要包括数据同趋化处理和无量纲化处理两个方面。

数据同趋化处理主要解

决不同性质数据问题,

对不同性质指标直接加总不能正确反映不同作用力的综合

结果,须先考虑改变逆指标数据性质,使所有指标对测评方案的作用力同趋化,

再加总才能得出正确结果。

数据无量纲化处理主要解决数据的可比性。

数据标准

化的方法有很多种,常用的有“最小—最大标准化”

Z-score

标准化”和“按

小数定标标准化”

等。

经过上述标准化处理,

原始数据均转换为无量纲化指标测

评值,即各指标值都处于同一个数量级别上,可以进行综合测评分析。

一、

max

Min

标准化

max

Min

标准化方法是对原始数据进行线性变换。设

minA

maxA

分别为

属性

A

的最小值和最大值,将

A

的一个原始值

x

通过

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
提供的源码资源涵盖了安卓应用、小程序、Python应用和Java应用等多个领域,每个领域都包含了丰富的实例和项目。这些源码都是基于各自平台的最新技术和标准编写,确保了在对应环境下能够无缝运行。同时,源码中配备了详细的注释和文档,帮助用户快速理解代码结构和实现逻辑。 适用人群: 这些源码资源特别适合大学生群体。无论你是计算机相关专业的学生,还是对其他领域编程感兴趣的学生,这些资源都能为你提供宝贵的学习和实践机会。通过学习和运行这些源码,你可以掌握各平台开发的基础知识,提升编程能力和项目实战经验。 使用场景及目标: 在学习阶段,你可以利用这些源码资源进行课程实践、课外项目或毕业设计。通过分析和运行源码,你将深入了解各平台开发的技术细节和最佳实践,逐步培养起自己的项目开发和问题解决能力。此外,在求职或创业过程中,具备跨平台开发能力的大学生将更具竞争力。 其他说明: 为了确保源码资源的可运行性和易用性,特别注意了以下几点:首先,每份源码都提供了详细的运行环境和依赖说明,确保用户能够轻松搭建起开发环境;其次,源码中的注释和文档都非常完善,方便用户快速上手和理解代码;最后,我会定期更新这些源码资源,以适应各平台技术的最新发展和市场需求。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值