对勾函数:形如
的函数
因为在第一象限的图象像对勾而得名。
飘带函数:形如
的函数
由来同上。
首先要吐槽一下,这两个教科书里没有的函数,却又在各种考试,甚至高考中频繁出现。
咱啥也不敢问,啥也不敢说,只能学呗
一、对勾函数:
它被无数数学老师称为“对勾函数”,又被无数莘莘学子戏称为“耐克函数”。
可以看到,它是由 和
相加而成的。

基本性质:
1.渐近线:因为
在x趋向0时趋向无穷大,在x趋向无穷大时趋向0,所以它的渐近线是由
和
。(这应该是高中第一个渐近线是曲线的函数)
2.极值点:(±
,±
)。简单粗暴的记忆方法:令
,求出的值即为拐点。(这点可以学完导数再来推导,也可以由基本不等式推导,这里就不多说了。)
3.单调性:找到拐点即可。
4.奇偶性:奇函数
注意:ab>0,不然不是对勾函数。
二、飘带函数: 

基本性质:
1.渐近线:y轴
2.单调性:在
上单调增。
3.奇偶性:奇函数
4.与x轴的交点:令
,得到交点坐标
。
写在最后
其实我也不只知道为啥写这个
因为不知道该写啥了
看到这的同学不妨给我留言哈哈哈哈
peace~