python小波分解与重构_python - 使用pyWavelets进行多级局部小波重构 - 堆栈内存溢出...

本文展示了如何使用pyWavelets库在Python中实现多级局部小波分解和重构。通过定义wrcoef函数,实现了系数的上采样,并通过不同级别的细节系数(D1, D2, D3, D4)与逼近系数(A4)的相加,成功地恢复了原始信号。" 50974456,5630426,Objective-C中的NSArray和NSMutableArray详解,"['iOS开发', 'Objective-C', '数组操作']
摘要由CSDN通过智能技术生成

我设法编写了自己的wrcoef函数版本,该版本似乎可以正常工作:

import pywt

import numpy as np

def wrcoef(X, coef_type, coeffs, wavename, level):

N = np.array(X).size

a, ds = coeffs[0], list(reversed(coeffs[1:]))

if coef_type =='a':

return pywt.upcoef('a', a, wavename, level=level)[:N]

elif coef_type == 'd':

return pywt.upcoef('d', ds[level-1], wavename, level=level)[:N]

else:

raise ValueError("Invalid coefficient type: {}".format(coef_type))

level = 4

X = [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17]

coeffs = pywt.wavedec(X, 'db1', level=level)

A4 = wrcoef(X, 'a', coeffs, 'db1', level)

D4 = wrcoef(X, 'd', coeffs, 'db1', level)

D3 = wrcoef(X, 'd', coeffs, 'db1', 3)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值