python中的小波分解与重构 pywt.wavedec

分解重构过程介绍

在这里插入图片描述

在这里插入图片描述

输入

  • 数据
  • 小波基
  • 分解层数

输出

一个列表,包含了分解后的系数。
近似分量:结果的第一个元素是近似分量 cA_n,
细节分量 :其余元素是细节分量 cD_n 到 cD_1。
如果是4层分解,cA_4,cD_4,cD_3,cD_2,cD_1 会得到5组系数。

coeff_all = pywt.wavedec(data, wl, level=level_n)```

这里data数据长度16384,采样频率1042,进行4层分解,采用“db1”小波基
得到的coeff_all 有五组
cA_4,系数个数1024
cD_4,系数个数1024
cD_3,系数个数2048
cD_2,系数个数4096
cD_1,系数个数8192,floor((n-1)/2)+N =floor((16384-1)/2)+2

### PyWavelets `pywt.wavedec2` 函数使用说明 #### 1. 基本功能介绍 `pywt.wavedec2` 是 PyWavelets 库中的一个重要函数,用于执行二维离散小波变换(DWT)。该函数能够分解输入数据到多个尺度的小波系数[^1]。 #### 2. 参数详解 以下是 `pywt.wavedec2` 的主要参数及其作用: - **data**: 输入的二维数组或矩阵。通常是一个图像或其他二维信号的数据表示。 - **wavelet**: 小波基的选择。可以是字符串形式的小波名称(如 `'haar'`, `'db4'`),也可以是预先定义好的 Wavelet 对象[^2]。 - **level** *(可选)*: 分解的层数。如果不指定,则会自动计算最大可能的层数。 - **mode** *(可选)*: 边界处理模式,默认为 `'symmetric'`。其他选项包括 `'zero'`, `'constant'`, `'periodic'` 等[^3]。 #### 3. 返回值结构 返回的结果是一个元组 `(cA, (cH, cV, cD))` 或者更深层次嵌套的形式,具体取决于分解的层次: - **cA**: 近似系数(Approximation Coefficients) - **cH**, **cV**, **cD**: 水平、垂直和对角细节系数(Detail Coefficients) 如果指定了更高的分解级别,则会有更多的近似和细节系数组合。 #### 4. 示例代码 以下是一段完整的 Python 示例代码展示如何使用 `pywt.wavedec2` 和其逆操作 `pywt.waverec2` 来完成二维小波变换及重建过程[^4]: ```python import numpy as np import pywt from matplotlib import image, pyplot as plt # 导入必要库并加载测试图片 img = image.imread('example_image.png') # 替换为实际路径 plt.imshow(img, cmap='gray') plt.title("Original Image") plt.show() # 执行二维小波变换 coeffs = pywt.wavedec2(img, 'bior1.3', level=2) # 提取不同部分的系数 cA, (cH, cV, cD), (_, _, _) = coeffs # 显示各个子带图 plt.figure(figsize=(8, 6)) for i, a in enumerate([cA, cH, cV, cD]): ax = plt.subplot(2, 2, i + 1) ax.imshow(a, interpolation="nearest", cmap='gray') ax.set_title(['Approximation', 'Horizontal detail', 'Vertical detail', 'Diagonal detail'][i]) ax.set_xticks([]) ax.set_yticks([]) plt.tight_layout() plt.show() # 使用逆变换重构原图 reconstructed_img = pywt.waverec2(coeffs, 'bior1.3') # 展示重构后的图像 plt.imshow(reconstructed_img, cmap='gray') plt.title("Reconstructed Image") plt.show() ``` #### 5. 注意事项 当调用 `pywt.wavedec2` 时需要注意以下几个方面: - 如果不通过关键字传递参数而仅依赖于顺序传参,容易引发错误,比如常见的 `ValueError: too many values to unpack (expected 4)` 错误。因此建议始终显式命名参数。 - 需要确保输入数据维度所选用的小波兼容;对于彩色图像需先转换成灰度格式再进行处理。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值