组合体视图的画图步骤_画组合体视图的方法和步骤

一、形体分析

画组合体视图之前,应对组合体进行形体分析,了解组合体的各基本形体形状、组合形式、相对位置及在哪个方向上是否对称,在对称方向上有哪些基本形体处于居中位置。以便对组合体的整体形状有个总的概念,为画它的视图做好准备。

图6-12所示的轴承座是由①圆筒状凸台、②圆筒轴承、③等腰梯形柱的支承板、④四棱柱与直角梯形柱组合的加强肋板、⑤四棱柱的底板等组成。轴承和凸台的内、外表面都有相贯线,轴承的外圆柱以曲面与加强肋板、支承板的顶面相接,它们的左、右端面都不平齐;支承板的前、后两侧面与圆筒轴承的外圆柱面相切,与底板的前、后两侧面都相交;加强肋板的前、后两侧面与圆筒轴承的外圆柱面截交;支承板的右面和底板的右面平齐。轴承座在宽度方向上具有前、后对称面,组成承座的五个部分在宽度方向上都处于居中位置。底板上的前、后两个圆柱孔及两个与圆柱通孔同轴线的四分之一圆柱面在轴承座宽度方向上处于对称位置。

二、确定主视图

三视图中的主视图是最主要的视图,因为画图或看图大都从主视图开始考虑,而且主视图通常是反映物体主要结构形状及其相对位置的视图,选择主视图就是确定主视图的投射方向和相对于投影面的位置问题。一般是选择反映其形状特征最明显、反映形体间相互位置最多的投射方向作为主视图的投射方向;安放位置反映工作位置,并使其表面、对称平面、回转轴线相对于投影面尽可能地多处于平行或垂直位置,还要考虑使其他视图上的虚线减少为好,也可选择其自然位置。主视图确定了,其他视图也就随之而定,但选几个视图要根据组合体的复杂程度决定。

从图6-12a和图6-13中可以看出,该组合体(轴承座)以投射方向A所画出的视图作为主视图,并按其工作位置安放为较好。同时也要兼顾使其他视图上的虚线少,如取图6-13c为主视图的投射方向,就回使左视图上的虚线增多。最后确定的三视图,如图6-14所示。

三、画图步骤

首先根据组合体的大小,选比例,定图幅,考虑标注尺寸所需的位置,均匀地布置视图。轴承座的画图步骤如图6-15所示。

(1)画各个视图的作图基线,如图6-15a所示。

通常选组合体上平行于投影面的对称平面、底面(上或下)、端面(左、右、后、前)等积聚成直线的投影和垂直于投影面的回转轴线的三个投影(表示积聚成点的投影用对称中心线),作为画各视线的基线。

(2)按形体分析画各个基本形体的三视图,如图6-15b∽f所示。

通常是先画外部较大的、整体堆叠组合的基本形体,后画内部较小的、细部挖切组合的基本形体,在逐个画每一基本形体的三视图时必须画完一基本形体的三视图后,才能画下一个基本形体,而且,一般先画投射为圆的视图,后画与其对应的非圆的视图(其轴线平行于投影面的),这种画图次序有利于保持投影关系,提高作图的准确性和作图的效率。

轴承座是上、中、下堆叠且有挖切的综合组合形式,按形体分析,可先画下(底板)后画下(轴承圆筒)、再画中(支承板),跟着画其他(肋板、凸台),6-15b~e所示。如属左、中、右或前、中、后的结构,作图方法类同。应根据前面章节讲到的作图规则,认真完成底稿图。

该文章所属专题:机械制图教程

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值