python多线程原理_python3爬虫中多线程的优势有哪些?

1606190066646741.jpg

有些小伙伴跟小编讨论了python中使用多线程原理的问题,就聊到了关于python多线程的弊端问题,这点可能在使用的过程中大家会能感觉到。而且之前讲过的GIL也是对python多线程的一种限制。那么,我们为什么还要用多线程呢?当然是多线程的优势已经掩盖了它本身不足之处,所以我们来加强一下学习python多线程的信心吧~

总结起来,使用多线程编程具有如下几个优点:进程之间不能共享内存,但线程之间共享内存非常容易。

操作系统在创建进程时,需要为该进程重新分配系统资源,但创建线程的代价则小得多。因此,使用多线程来实现多任务并发执行比使用多进程的效率高。

Python 语言内置了多线程功能支持,而不是单纯地作为底层操作系统的调度方式,从而简化了 Python 的多线程编程。

threading模块

普通创建方式import threading

import time

def run(n):

print("task", n)

time.sleep(1)

print('2s')

time.sleep(1)

print('1s')

time.sleep(1)

print('0s')

time.sleep(1)

if __name__ == '__main__':

t1 = threading.Thread(target=run, args=("t1",))

t2 = threading.Thread(target=run, args=("t2",))

t1.start()

t2.start()

----------------------------------

>>> task t1

>>> task t2

>>> 2s

>>> 2s

>>> 1s

>>> 1s

>>> 0s

>>> 0s

守护线程

我们看下面这个例子,这里使用setDaemon(True)把所有的子线程都变成了主线程的守护线程,因此当主进程结束后,子线程也会随之结束。所以当主线程结束后,整个程序就退出了。import threading

import time

def run(n):

print("task", n)

time.sleep(1) #此时子线程停1s

print('3')

time.sleep(1)

print('2')

time.sleep(1)

print('1')

if __name__ == '__main__':

t = threading.Thread(target=run, args=("t1",))

t.setDaemon(True) #把子进程设置为守护线程,必须在start()之前设置

t.start()

print("end")

----------------------------------

>>> task t1

>>> end

我们可以发现,设置守护线程之后,当主线程结束时,子线程也将立即结束,不再执行。

从上面简单的两个多线程使用案例上,我们已经可以学到多线程一些应用的地方了,不过小编还是喜欢用python爬虫多线程的优势来获取更多的数据,小伙伴们也可以开拓其他的使用。更多Python学习指路:PyThon学习网教学中心。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值