用python数据分析天气_使用Python进行天气预测之获取数据

本文介绍如何使用Python爬虫从网上抓取成都2011年至2018年的历史天气数据,包括日期、最高气温、最低气温、天气情况、风向、风力、空气指数等信息,并对数据进行简单的分析,展示气温变化趋势。
摘要由CSDN通过智能技术生成

0. 前言

Python实战之天气预测

1. 爬取数据

这里使用request库和正则表达式进行数据的爬取

爬取网上的历史天气数据,这里我使用了成都的历史天气数据(2011-2018年)

之后的天气预测也将会使用成都的历史天气数据

这里说明:

由于数据存在缺失,2016年以前的空气质量数据没有找到

通过分析网址我们得到最后的数据都是存在于js文件中的。

1.1 构造日期:for year in range(2011, 2019):

for month in range(1, 13):

if month == 12 and year > 2016:

month = "%.2d".format() % month

url = "http://tianqi.2345.com/t/wea_history/js/" + str(year) + str(month) + "/56294_" + str(year) + str(

month) + ".js"

else:

url = "http://tianqi.2345.com/t/wea_history/js/56294_" + str(year) + str(month) + ".js"

print(url)

getData(url)

通过分析链接可以,在2016年以前,每个12月的链接和一般的链接是不一样的。

所以我们加上了判断语句,当然细心的小伙伴应该可以看到我们这里还会构造出2019年的链接,这个错误链接我们在后面获取数据的时候会进行处理,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值