python 元组与数组的区别_Python的列表和元组两种数据结构区别差异分析

本文详细介绍了Python中列表和元组的区别,包括它们的存储结构、查询效率及内存管理。列表作为动态数组,支持元素修改但会进行超额分配;元组作为静态数组,不可修改且在内存管理上更高效。对于不变数据,推荐使用元组,以提高读取效率。同时,文章探讨了如何通过排序和二分查找提高列表查询速度。

前言

相信大家对于Python的列表和元组两种数据结构并不陌生了,如果我问大家这两种数据结构有什么区别呢?列表和元组都是数组,列表是动态的数组可以修改,元组是静态的数组不可修改。除此之外,大家还能想到其他的区别吗?接下来就让我来详细给大家介绍一下吧。

列表中高效搜索算法

存储结构

为了更好的了解列表,先来看看列表存储结构,列表其实也就是数组。当我们创建列表时,系统就需要给这个列表分配一块存储空间用来存放地址,地址指向的就是列表中存放的数据。

pIYBAF9t96aAJA8PAAASQJD_BD0252.png

需要注意的是,如果给列表分配了8块存储空间,那么实际上列表能用的空间只有7,第一块空间是用来存放列表的长度。

查询任意指定的元素时,只需要知道列表存储的起始位置和元素存储的位置(这里的位置不是指地址,而是指元素相对于起始地址的偏移量),就可以很快到查询到。因为每块存储空间占用的大小(存储地址)都是一样的,占用一个整形大小的空间用来指向列表中存放的数据,所以在查询元素的时候与列表中存放的数据类型无关。

例如:列表的起始位置是M,我们想要列表中的第k个元素,这时候只需要将指针移到M+k的位置,然后再读取数据就好了。也就是说,只要数据保存在一个连续的存储空间中时,查询指定位置元素的时间复杂度为O(1)。

列表查询

在介绍列表的存储结构的时候,已经知道了如果指定列表存储的起始位置,当需要查询指定位置元素时的时间复杂度为O(1)。那如果是已知元素的值,查询元素的位置,此时的时间复杂度又是多少呢?如果大家对这段话不是很理解,下面举例说明一下。

例如:有一个列表a为[5,3,7,8,2,1,4],此时如果想要获取a[2]的元素值时的时间复杂度为O(1),此时查询元素值与列表的大小无关。当我们想知道4是否在列表中,最简单的方法就是遍历数组中的每一个元素与我们寻找的元素一一比对是否相等,这种方法最差的时间复

Python中的元组(Tuple)数组有着不同的特点用途。 元组是以圆括号“()”包围的数据集合,不同的元素以逗号“,”分隔。元组是不可变的,即一旦创建就不能修改。元组可以包含不同类型的元素,并且元素的顺序在创建时会保持不变。例如,T=(1,2,3)是一个包含整数元素的元组元组在多个元素之间的关系是有序的。 而在Python中并没有严格意义上的数组Python中最接近数组的数据类型是列表(List)。列表是一种动态数组,可以包含任意类型的元素,并且可以随意修改。列表使用方括号“[]”来表示。列表中的元素在内存中是连续存储的,可以通过索引来访问修改元素。 此外,还有Numpy库中的数组矩阵。Numpy数组是一种多维数组,可以包含相同类型的元素,并且在创建后大小是固定的。Numpy数组提供了许多强大的数学科学计算函数方法。Numpy矩阵是特殊的二维数组,用于数学运算线性代数操作。Numpy库提供了丰富的函数方法用于操作处理数组矩阵。 综上所述,元组是一种不可变的有序集合,而列表是一种可变的有序集合,Numpy数组矩阵是用于科学计算数学运算的数据结构。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [【PythonPython中的数组列表元组、Numpy数组、Numpy矩阵](https://download.csdn.net/download/weixin_38682790/13748464)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* *3* [python 列表元组数组](https://blog.csdn.net/weixin_44764524/article/details/112678820)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值