三角形外接球万能公式_模法筆記? 外接球问题,两步出结果!——圆柱外接球模型...

本文介绍了解决立体几何中外接球问题的高效方法,特别是针对圆柱外接球模型。通过识别模型并应用特定公式,可以简化求解步骤,无需复杂作图。内容涵盖直棱柱、垂棱锥和侧面垂底四棱锥的外接球问题,强调了正弦定理在求解半径中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

484280c1476cb814cf65e9fae43bfb2b.png

题记: 立体几何压轴小题,基本上无论哪个省份,都会十分宠幸“几何体的外接球问题”。那么,倒霉的,看似就是我们这些广大高三狗了。

而这类问题你通常会想到:

❶ 画出球体、标明球心

❷ 画出球的内接几何体

❸ 寻找突破口建立方程。

以上的方法可以说是“通法”,但,并不好用!因为很多人空间感略差,而另外一些人就算空间感不错,最后可能依然面临找不到关系(因为找嘛,考察的是眼力,看走眼总是很正常的)。

那今天我告诉你,这类题80%以上(夸张的说法,确实没统计过,但真的很频繁。)都不用画图,只需要2步搞定:

识别模型

代入公式

就可以轻松求出外接球半径

本节教给你的就是这80%中最常用到的第1个模型——圆柱外接球模型。

一、题型描述

几何体的外接球问题: 题目中涉及几何体外接球体,或者球内接几何体,再或者球面上有几个点围成几何体,这类题型称之为几何体的外接球问题。

二、技巧讲解

以下这幅图,大家应该都能看懂:一个底面半径为

,高为
的圆柱,求它的外接球半径。图片的右侧我给出了求解公式,容易理解不赘述。

ad94001d8ff3c5525313b61e7eb0e784.png
高为h,底面半径为r的圆柱外接球半径求法

这里我要让你明白公式 “

” 的由来。至于这个式子有何妙用?接着看——

Part 1. 直棱柱的外接球

如果我们对圆柱上下底面对应位置处,取相同数量的点,比如都取三个点,如图所示:

023acd35283e385f13d0fd655f3cddb7.png

我们可以得到(直)三棱柱,它的外接球其实就是这个圆柱的外接球,所以说直棱柱的“外接球求半径”符合这个模型。

在这里棱柱的高就是公式中的
,而棱柱底面外接圆的半径则是公式中的

至于怎么求底面外接圆半径

?你先自己想想,最后我会说。

哦对了,斜棱柱怎么办? 斜棱柱没有外接球,有兴趣的自己尝试找到原因。

Part 2. 垂棱锥的外接球

我们再继续,如果我把刚刚那个三棱柱上面的

两点干掉,我将得到三棱锥,如图:

9346428fcba2699886d8d8a51b15079e.png
高为h,底面外接圆半径为r的垂棱锥的外接球半径求法

这个三棱锥的特点是

底面
,即有
一根侧棱⊥底面的锥体依然符合这个模型
那条竖直棱
就是公式中的
,而底面
的外接圆半径是公式中的

Part 3. 侧面垂底的四棱锥的外接球

题目还喜欢这么干:

1790a99ff6924a5a614f4580f962cc22.png
面PAD⊥面ABCD

这种类型题目考的够多的了吧!而你,是不是每次都傻傻的画球?其实我告诉你,

它!非!常!符!合!圆!柱!外!接!球!模!型!

接着看,当我对第二幅图中的三棱柱

只去掉
这个点,会得到什么呢?

ebaaf8ede79f3b4746376aa46aabbd9c.png
垂底面倒放的四棱锥

没错!这就是刚刚那个四棱锥放倒了! 它的特点是:底面

⊥侧面
(这里的
相当于原四棱锥的侧面
,这里的
相当于原四棱锥的底面
)。

再看这个四棱锥:

9f317475f37077deaf75402f122bd878.png
我们知道,这里的
的外接圆半径,
的长。

让我们总结一下:

108b206b5bcc235598b4b56b02e119d2.png

圆柱外接球模型

适用于:

圆柱——

自带

直棱柱——

:底面外接圆半径;
:直棱柱的高

一根侧棱⊥底面的锥体——

:底面外接圆半径;
:垂直于底面的那条侧棱

❹ 一个侧面⊥矩形底面的四棱锥——

:垂直底面的侧面的外接圆半径;
:垂直于那个侧面的底边长

de0a09a1e8a3a21b3e159a1aa2ddb3ba.png

那么接下来第二步就是找到

,求出
。而
又怎么求呢?

正弦定理。正弦定理。正弦定理。

可以说,正弦定理求外接圆半径这种方法,咱们基本上只在高一提及过,后来就很少用到它!其实,几乎整个高考也就此处——「外接球题型」可以用它来求那个

了。所以~~~你千万要学会哟!

讲解如图:

342ab72a7d31c26b0cb290c1107b4935.png

当我们求出

,找到
,剩下的就是套入公式了:

来,我们秒杀几道:

例1. 直三棱柱
的六个顶点都在球
的球面上,若
,则球
的表面积为

A.
B.
C.
D.

学神鱼解析:直棱柱的外接球符合圆柱外接球模型:底面

等腰,所以
对角为
.

所以

. 而

所以

所以球体表面积:

,C正确

例2.
均在同一球面上,其中
是正三角形,
⊥平面
,则该球的体积为___________.

学神鱼解析:由题

⊥平面
,符合一根侧棱⊥底面的锥体,符合圆柱外接球模型。

等边,所以
;而

所以

所以球的体积

例3. 已知四棱锥
的顶点都在球
上,底面
是矩形,平面
平面
为正三角形,
,则球
的表面积为

A.
B.
C.
D.

学神鱼解析:由题,四棱锥

中,平面
平面
,符合圆柱外接球模型。

的外接圆半径为
,因为
,可由正弦定理求得:
; 而

所以

所以球体表面积

,D正确

以上,就是本节课程的全部内容。希望能够帮助到你!

<完>

PS:在这里,感谢@烦躁的雅女同学对本节课程的首个赞赏!


如果觉得本文对你有帮助,请点赞收藏,以便你能第一时间找到~~~

更多前往公众号:jslxcn(精师良学)、hitsir(学神鱼)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值