
题记: 立体几何压轴小题,基本上无论哪个省份,都会十分宠幸“几何体的外接球问题”。那么,倒霉的,看似就是我们这些广大高三狗了。
而这类问题你通常会想到:
❶ 画出球体、标明球心
❷ 画出球的内接几何体
❸ 寻找突破口建立方程。
以上的方法可以说是“通法”,但,并不好用!因为很多人空间感略差,而另外一些人就算空间感不错,最后可能依然面临找不到关系(因为找嘛,考察的是眼力,看走眼总是很正常的)。
那今天我告诉你,这类题80%以上(夸张的说法,确实没统计过,但真的很频繁。)都不用画图,只需要2步搞定:
❶ 识别模型
❷ 代入公式
就可以轻松求出外接球半径
本节教给你的就是这80%中最常用到的第1个模型——圆柱外接球模型。
一、题型描述
几何体的外接球问题: 题目中涉及几何体外接球体,或者球内接几何体,再或者球面上有几个点围成几何体,这类题型称之为几何体的外接球问题。
二、技巧讲解
以下这幅图,大家应该都能看懂:一个底面半径为

这里我要让你明白公式 “
Part 1. 直棱柱的外接球
如果我们对圆柱上下底面对应位置处,取相同数量的点,比如都取三个点,如图所示:

我们可以得到(直)三棱柱,它的外接球其实就是这个圆柱的外接球,所以说直棱柱的“外接球求半径”符合这个模型。
在这里棱柱的高就是公式中的,而棱柱底面外接圆的半径则是公式中的
。
至于怎么求底面外接圆半径
哦对了,斜棱柱怎么办? 斜棱柱没有外接球,有兴趣的自己尝试找到原因。
Part 2. 垂棱锥的外接球
我们再继续,如果我把刚刚那个三棱柱上面的

这个三棱锥的特点是
那条竖直棱就是公式中的
,而底面
的外接圆半径是公式中的
。
Part 3. 侧面垂底的四棱锥的外接球
题目还喜欢这么干:

这种类型题目考的够多的了吧!而你,是不是每次都傻傻的画球?其实我告诉你,
它!非!常!符!合!圆!柱!外!接!球!模!型!
接着看,当我对第二幅图中的三棱柱

没错!这就是刚刚那个四棱锥放倒了! 它的特点是:底面
再看这个四棱锥:

我们知道,这里的为
的外接圆半径,
为
或
的长。
让我们总结一下:

圆柱外接球模型
适用于:
❶ 圆柱——
❷ 直棱柱——
❸ 一根侧棱⊥底面的锥体——
❹ 一个侧面⊥矩形底面的四棱锥——

那么接下来第二步就是找到
正弦定理。正弦定理。正弦定理。
可以说,正弦定理求外接圆半径这种方法,咱们基本上只在高一提及过,后来就很少用到它!其实,几乎整个高考也就此处——「外接球题型」可以用它来求那个
讲解如图:

当我们求出
来,我们秒杀几道:
例1. 直三棱柱的六个顶点都在球
的球面上,若
,
,
,则球
的表面积为
A.B.
C.
D.
![]()
学神鱼解析:直棱柱的外接球符合圆柱外接球模型:底面
所以
所以
所以球体表面积:
例2. 点均在同一球面上,其中
是正三角形,
⊥平面
,
,则该球的体积为___________.
学神鱼解析:由题
所以
所以球的体积
例3. 已知四棱锥的顶点都在球
上,底面
是矩形,平面
平面
,
为正三角形,
,则球
的表面积为
A.B.
C.
D.
![]()
学神鱼解析:由题,四棱锥
所以
所以球体表面积
以上,就是本节课程的全部内容。希望能够帮助到你!
<完>
PS:在这里,感谢@烦躁的雅女同学对本节课程的首个赞赏!
如果觉得本文对你有帮助,请点赞收藏,以便你能第一时间找到~~~
更多前往公众号:jslxcn(精师良学)、hitsir(学神鱼)